mirror of
https://github.com/pfloos/quack
synced 2025-01-03 18:16:18 +01:00
routines for exponential of matrices
This commit is contained in:
parent
8554099673
commit
66f6890082
@ -1,5 +1,5 @@
|
||||
# RHF UHF GHF ROHF
|
||||
F T F F
|
||||
T F F F
|
||||
# MP2 MP3
|
||||
F F
|
||||
# CCD pCCD DCD CCSD CCSD(T)
|
||||
|
@ -105,9 +105,9 @@ subroutine GGW(doG0W0,doevGW,doqsGW,maxSCF,thresh,max_diis,doACFDT, &
|
||||
if(doqsGW) then
|
||||
|
||||
call wall_time(start_GW)
|
||||
! call qsGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,dTDA,doppBSE, &
|
||||
! eta,regularize,nNuc,ZNuc,rNuc,ENuc,nBas,nC,nO,nV,nR,nS,EHF,S,X,T,V,Hc,ERI_AO,ERI, &
|
||||
! dipole_int_AO,dipole_int,PHF,cHF,epsHF)
|
||||
! call qsGGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,dTDA,doppBSE, &
|
||||
! eta,regularize,nNuc,ZNuc,rNuc,ENuc,nBas,nBas2,nC,nO,nV,nR,nS,EHF,S,X,T,V,Hc,ERI_AO,ERI, &
|
||||
! dipole_int_AO,dipole_int,PHF,cHF,epsHF)
|
||||
call wall_time(end_GW)
|
||||
|
||||
t_GW = end_GW - start_GW
|
||||
|
@ -57,8 +57,6 @@ subroutine qsUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE,TDA_W,
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: doGWPT = .false.
|
||||
|
||||
integer :: nSCF
|
||||
integer :: nBasSq
|
||||
integer :: ispin
|
||||
|
@ -48,6 +48,8 @@ subroutine RHF_search(maxSCF,thresh,max_diis,guess_type,level_shift,nNuc,ZNuc,rN
|
||||
double precision,allocatable :: Bph(:,:)
|
||||
double precision,allocatable :: AB(:,:)
|
||||
double precision,allocatable :: Om(:)
|
||||
double precision,allocatable :: R(:,:)
|
||||
double precision,allocatable :: ExpR(:,:)
|
||||
|
||||
integer :: eig
|
||||
double precision :: kick,step
|
||||
@ -72,7 +74,8 @@ subroutine RHF_search(maxSCF,thresh,max_diis,guess_type,level_shift,nNuc,ZNuc,rN
|
||||
!-------------------!
|
||||
|
||||
nS = (nO - nC)*(nV - nR)
|
||||
allocate(ERI_MO(nBas,nBas,nBas,nBas),Aph(nS,nS),Bph(nS,nS),AB(nS,nS),Om(nS))
|
||||
allocate(ERI_MO(nBas,nBas,nBas,nBas),Aph(nS,nS),Bph(nS,nS),AB(nS,nS),Om(nS), &
|
||||
R(nBas,nBas),ExpR(nBas,nBas))
|
||||
|
||||
!------------------!
|
||||
! Search algorithm !
|
||||
@ -168,6 +171,19 @@ subroutine RHF_search(maxSCF,thresh,max_diis,guess_type,level_shift,nNuc,ZNuc,rN
|
||||
end do
|
||||
end do
|
||||
|
||||
! R(:,:) = 0d0
|
||||
! ia = 0
|
||||
! do i=nC+1,nO
|
||||
! do a=nO+1,nBas-nR
|
||||
! ia = ia + 1
|
||||
! R(a,i) = +AB(ia,eig)
|
||||
! R(i,a) = -AB(ia,eig)
|
||||
! end do
|
||||
! end do
|
||||
|
||||
! call matrix_exponential(nBas,R,ExpR)
|
||||
! c = matmul(c,ExpR)
|
||||
|
||||
else
|
||||
|
||||
write(*,'(1X,A40,1X)') 'Well done, RHF solution is stable!'
|
||||
|
@ -44,6 +44,69 @@ function KroneckerDelta(i,j) result(delta)
|
||||
|
||||
end function
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine diagonal_matrix(N,D,A)
|
||||
|
||||
! Construct diagonal matrix A from vector D
|
||||
|
||||
implicit none
|
||||
|
||||
integer,intent(in) :: N
|
||||
double precision,intent(in) :: D(N)
|
||||
double precision,intent(out) :: A(N,N)
|
||||
|
||||
integer :: i
|
||||
|
||||
A(:,:) = 0d0
|
||||
do i=1,N
|
||||
A(i,i) = D(i)
|
||||
end do
|
||||
|
||||
end subroutine
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine matrix_exponential(N,A,ExpA)
|
||||
|
||||
! Compute Exp(A)
|
||||
|
||||
implicit none
|
||||
|
||||
integer,intent(in) :: N
|
||||
double precision,intent(in) :: A(N,N)
|
||||
double precision,allocatable :: W(:,:)
|
||||
double precision,allocatable :: tau(:)
|
||||
double precision,allocatable :: t(:,:)
|
||||
double precision,intent(out) :: ExpA(N,N)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(W(N,N),tau(N),t(N,N))
|
||||
|
||||
! Initialize
|
||||
|
||||
ExpA(:,:) = 0d0
|
||||
|
||||
! Diagonalize
|
||||
|
||||
W(:,:) = - matmul(A,A)
|
||||
call diagonalize_matrix(N,W,tau)
|
||||
tau(:) = sqrt(tau(:))
|
||||
|
||||
! Construct cos part
|
||||
|
||||
call diagonal_matrix(N,cos(tau),t)
|
||||
t(:,:) = matmul(t,transpose(W))
|
||||
ExpA(:,:) = ExpA(:,:) + matmul(W,t)
|
||||
|
||||
! Construct sin part
|
||||
|
||||
call diagonal_matrix(N,sin(tau)/tau,t)
|
||||
t(:,:) = matmul(t,transpose(W))
|
||||
t(:,:) = matmul(t,A)
|
||||
ExpA(:,:) = ExpA(:,:) + matmul(W,t)
|
||||
|
||||
end subroutine
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
subroutine matout(m,n,A)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user