mirror of
https://github.com/pfloos/quack
synced 2025-01-08 20:33:30 +01:00
regularized MP2
This commit is contained in:
commit
50d22777e9
@ -1,5 +1,5 @@
|
||||
# RHF UHF KS MOM
|
||||
T F F F
|
||||
F T F F
|
||||
# MP2* MP3 MP2-F12
|
||||
T F F
|
||||
# CCD pCCD DCD CCSD CCSD(T)
|
||||
@ -9,9 +9,9 @@
|
||||
# CIS* CIS(D) CID CISD FCI
|
||||
F F F F F
|
||||
# RPA* RPAx* crRPA ppRPA
|
||||
F F F F
|
||||
F F F T
|
||||
# G0F2* evGF2* qsGF2* G0F3 evGF3
|
||||
F F F F F
|
||||
F F F F F
|
||||
# G0W0* evGW* qsGW* ufG0W0 ufGW
|
||||
F F F F F
|
||||
# G0T0 evGT qsGT
|
||||
|
@ -1,11 +1,11 @@
|
||||
# HF: maxSCF thresh DIIS n_diis guess_type ortho_type mix_guess stability
|
||||
1024 0.00001 T 5 1 1 F F
|
||||
1024 0.00001 T 5 1 1 T F
|
||||
# MP:
|
||||
|
||||
# CC: maxSCF thresh DIIS n_diis
|
||||
64 0.00001 T 5
|
||||
# spin: TDA singlet triplet spin_conserved spin_flip
|
||||
F T T T T
|
||||
F T T T T
|
||||
# GF: maxSCF thresh DIIS n_diis lin eta renorm
|
||||
256 0.00001 T 5 T 0.00367493 3
|
||||
# GW/GT: maxSCF thresh DIIS n_diis lin eta COHSEX SOSEX TDA_W G0W GW0
|
||||
|
@ -1,4 +1,4 @@
|
||||
2
|
||||
|
||||
H 0. 0. 0.
|
||||
H 0. 0. 1.2
|
||||
H 0. 0. 0.5
|
||||
|
@ -47,7 +47,8 @@ subroutine linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Om
|
||||
! Memory allocation
|
||||
|
||||
allocate(B(nVV,nOO),C(nVV,nVV),D(nOO,nOO),M(nOO+nVV,nOO+nVV),Z(nOO+nVV,nOO+nVV),Omega(nOO+nVV))
|
||||
|
||||
write(*,*) 'nOO', nOO
|
||||
write(*,*) 'nVV', nVV
|
||||
!-------------------------------------------------!
|
||||
! Solve the p-p eigenproblem !
|
||||
!-------------------------------------------------!
|
||||
@ -62,7 +63,7 @@ subroutine linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Om
|
||||
|
||||
call linear_response_C_pp(ispin,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,C)
|
||||
call linear_response_D_pp(ispin,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,D)
|
||||
|
||||
!call matout(nVV,nVV,C)
|
||||
if(TDA) then
|
||||
|
||||
X1(:,:) = +C(:,:)
|
||||
@ -76,7 +77,8 @@ subroutine linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Om
|
||||
else
|
||||
|
||||
call linear_response_B_pp(ispin,nBas,nC,nO,nV,nR,nOO,nVV,lambda,ERI,B)
|
||||
|
||||
!call matout(nVV,nOO,B)
|
||||
!call matout(nOO,nOO,D)
|
||||
! Diagonal blocks
|
||||
|
||||
M( 1:nVV , 1:nVV) = + C(1:nVV,1:nVV)
|
||||
@ -86,7 +88,7 @@ subroutine linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Om
|
||||
|
||||
M( 1:nVV ,nVV+1:nOO+nVV) = - B(1:nVV,1:nOO)
|
||||
M(nVV+1:nOO+nVV, 1:nVV) = + transpose(B(1:nVV,1:nOO))
|
||||
|
||||
call matout(nOO+nVV,nOO+nVV,M)
|
||||
! Diagonalize the p-h matrix
|
||||
|
||||
if(nOO+nVV > 0) call diagonalize_general_matrix(nOO+nVV,M,Omega,Z)
|
||||
|
@ -46,21 +46,21 @@ subroutine unrestricted_linear_response_B_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
! Build B matrix for spin-conserving transitions
|
||||
!-----------------------------------------------
|
||||
|
||||
if(ispin == 1) then
|
||||
if(ispin == 1) then
|
||||
|
||||
! aaaa block
|
||||
|
||||
ab = 0
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do b=nO(1)+1,nBas-nR(1)
|
||||
do b=a,nBas-nR(1)
|
||||
ab = ab + 1
|
||||
ij = 0
|
||||
do i=nC(1)+1,nO(1)
|
||||
do j=nC(1)+1,nO(1)
|
||||
do j=i+1,nO(1)
|
||||
ij = ij + 1
|
||||
|
||||
B_pp(ab,ij) = lambda*(ERI_aaaa(a,b,i,j) - ERI_aaaa(a,b,j,i))
|
||||
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -70,14 +70,14 @@ subroutine unrestricted_linear_response_B_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
|
||||
ab = 0
|
||||
do a=nO(2)+1,nBas-nR(2)
|
||||
do b=nO(2)+1,nBas-nR(2)
|
||||
do b=a+1,nBas-nR(2)
|
||||
ab = ab + 1
|
||||
ij = 0
|
||||
do i=nC(2)+1,nO(2)
|
||||
do j=nC(2)+1,nO(2)
|
||||
do j=i+1,nO(2)
|
||||
ij = ij + 1
|
||||
|
||||
B_pp(nPaa+nPab+ab,nHaa+nHab+ij) = lambda*(ERI_bbbb(a,b,i,j) - ERI_bbbb(a,b,j,i))
|
||||
B_pp(nPaa+ab,nHaa+ij) = lambda*(ERI_bbbb(a,b,i,j) - ERI_bbbb(a,b,j,i))
|
||||
|
||||
end do
|
||||
end do
|
||||
@ -104,7 +104,10 @@ subroutine unrestricted_linear_response_B_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
do i=nC(1)+1,nO(1)
|
||||
do j=nC(2)+1,nO(2)
|
||||
ij = ij + 1
|
||||
B_pp(nPaa+ab,nHaa+ij) = lambda*ERI_aabb(a,b,i,j)
|
||||
|
||||
B_pp(ab,ij) = lambda*ERI_aabb(a,b,i,j)
|
||||
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
@ -48,16 +48,16 @@ subroutine unrestricted_linear_response_C_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
|
||||
ab = 0
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do b=nO(1)+1,nBas-nR(1)
|
||||
do b=a,nBas-nR(1)
|
||||
ab = ab + 1
|
||||
cd = 0
|
||||
do c=nO(1)+1,nBas-nR(1)
|
||||
do d=nO(1)+1,nBas-nR(1)
|
||||
do d=c,nBas-nR(1)
|
||||
cd = cd + 1
|
||||
|
||||
C_pp(ab,cd) = (e(a,1) + e(b,1) - eF)*Kronecker_delta(a,c)*Kronecker_delta(b,d) &
|
||||
+ lambda*(ERI_aaaa(a,b,c,d) - ERI_aaaa(a,b,d,c))
|
||||
|
||||
!write(*,*) C_pp(ab,cd)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -67,23 +67,23 @@ subroutine unrestricted_linear_response_C_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
|
||||
ab = 0
|
||||
do a=nO(2)+1,nBas-nR(2)
|
||||
do b=nO(2)+1,nBas-nR(2)
|
||||
do b=a,nBas-nR(2)
|
||||
ab = ab + 1
|
||||
cd = 0
|
||||
do c=nO(2)+1,nBas-nR(2)
|
||||
do d=nO(2)+1,nBas-nR(2)
|
||||
do d=c,nBas-nR(2)
|
||||
cd = cd + 1
|
||||
|
||||
C_pp(nPaa+nPab+ab,nPaa+nPab+cd) = (e(a,2) + e(b,2) - eF)*Kronecker_delta(a,c) &
|
||||
*Kronecker_delta(b,d) + lambda*(ERI_bbbb(a,b,c,d) - ERI_bbbb(a,b,d,c))
|
||||
|
||||
end do
|
||||
C_pp(nPaa+ab,nPaa+cd) = (e(a,2) + e(b,2) - eF)*Kronecker_delta(a,c) &
|
||||
*Kronecker_delta(b,d) + lambda*(ERI_bbbb(a,b,c,d) - ERI_bbbb(a,b,d,c))
|
||||
!write(*,*) 'nPaa+ab',nPaa+ab
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
end if
|
||||
|
||||
!
|
||||
!-----------------------------------------------
|
||||
! Build C matrix for spin-flip transitions
|
||||
!-----------------------------------------------
|
||||
@ -102,7 +102,7 @@ subroutine unrestricted_linear_response_C_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
do c=nO(1)+1,nBas-nR(1)
|
||||
do d=nO(2)+1,nBas-nR(2)
|
||||
cd = cd + 1
|
||||
C_pp(nPaa+ab,nPaa+cd) = (e(a,1) + e(b,2))*Kronecker_delta(a,c) &
|
||||
C_pp(ab,cd) = (e(a,1) + e(b,2))*Kronecker_delta(a,c) &
|
||||
*Kronecker_delta(b,c) + lambda*ERI_aabb(a,b,c,d)
|
||||
end do
|
||||
end do
|
||||
|
@ -48,11 +48,11 @@ subroutine unrestricted_linear_response_D_pp(ispin,nBas,nC,nO,nV,nR,nHaa,nHab,nH
|
||||
|
||||
ij = 0
|
||||
do i=nC(1)+1,nO(1)
|
||||
do j=nC(1)+1,nO(1)
|
||||
do j=i+1,nO(1)
|
||||
ij = ij + 1
|
||||
kl = 0
|
||||
do k=nC(1)+1,nO(1)
|
||||
do l=nC(1)+1,nO(1)
|
||||
do l=k+1,nO(1)
|
||||
kl = kl + 1
|
||||
|
||||
D_pp(ij,kl) = -(e(i,1) + e(j,1) - eF)*Kronecker_delta(i,k)*Kronecker_delta(j,l) &
|
||||
@ -67,14 +67,14 @@ subroutine unrestricted_linear_response_D_pp(ispin,nBas,nC,nO,nV,nR,nHaa,nHab,nH
|
||||
|
||||
ij = 0
|
||||
do i=nC(2)+1,nO(2)
|
||||
do j=nC(2)+1,nO(2)
|
||||
do j=i+1,nO(2)
|
||||
ij = ij + 1
|
||||
kl = 0
|
||||
do k=nC(2)+1,nO(2)
|
||||
do l=nC(2)+1,nO(2)
|
||||
do l=k+1,nO(2)
|
||||
kl = kl + 1
|
||||
|
||||
D_pp(nHaa+nHab+ij,nHaa+nHab+kl) = -(e(i,2) + e(j,2) - eF)*Kronecker_delta(i,k) &
|
||||
D_pp(nHaa+ij,nHaa+kl) = -(e(i,2) + e(j,2) - eF)*Kronecker_delta(i,k) &
|
||||
*Kronecker_delta(j,l) + lambda*(ERI_bbbb(i,j,k,l) - ERI_bbbb(i,j,l,k))
|
||||
|
||||
end do
|
||||
@ -102,7 +102,7 @@ subroutine unrestricted_linear_response_D_pp(ispin,nBas,nC,nO,nV,nR,nHaa,nHab,nH
|
||||
do k=nC(1)+1,nO(1)
|
||||
do l=nC(2)+1,nO(2)
|
||||
kl = kl + 1
|
||||
D_pp(nHaa+ij,nHaa+kl) = -(e(i,1) + e(j,2))*Kronecker_delta(i,k)&
|
||||
D_pp(ij,kl) = -(e(i,1) + e(j,2))*Kronecker_delta(i,k)&
|
||||
*Kronecker_delta(j,l) +lambda*ERI_aabb(i,j,k,l)
|
||||
end do
|
||||
end do
|
||||
|
@ -1,5 +1,5 @@
|
||||
subroutine unrestricted_linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPt, &
|
||||
nHaa,nHab,nHbb,nHt,nS_sc,lambda,e,ERI_aaaa,ERI_aabb,ERI_bbbb,Omega1,X1,Y1,Omega2,X2,Y2,&
|
||||
nHaa,nHab,nHbb,nHt,lambda,e,ERI_aaaa,ERI_aabb,ERI_bbbb,Omega1,X1,Y1,Omega2,X2,Y2,&
|
||||
EcRPA)
|
||||
|
||||
! Compute linear response for unrestricted formalism
|
||||
@ -23,8 +23,7 @@ EcRPA)
|
||||
integer,intent(in) :: nHaa
|
||||
integer,intent(in) :: nHab
|
||||
integer,intent(in) :: nHbb
|
||||
integer,intent(in) :: nHt
|
||||
integer,intent(in) :: nS_sc
|
||||
integer,intent(in) :: nHt
|
||||
double precision,intent(in) :: lambda
|
||||
double precision,intent(in) :: e(nBas,nspin)
|
||||
double precision,intent(in) :: ERI_aaaa(nBas,nBas,nBas,nBas)
|
||||
@ -56,20 +55,28 @@ EcRPA)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(C(nPt,nPt),B(nPt,nHt),D(nHt,nHt),M(nPt+nHt,nPt+nHt),Z(nPt+nHt,nPt+nHt),&
|
||||
allocate(C(nPt,nPt),B(nPt,nHt),D(nHt,nHt),M(nPt+nHt,nPt+nHt),Z(nPt+nHt,nPt+nHt),&
|
||||
Omega(nPt+nHt))
|
||||
|
||||
!write(*,*) 'ispin', ispin
|
||||
!write(*,*) 'nPt', nPt
|
||||
!write(*,*) 'nHt', nHt
|
||||
! Build C, B and D matrices for the pp channel
|
||||
|
||||
call unrestricted_linear_response_C_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPt,lambda,&
|
||||
e,ERI_aaaa,ERI_aabb,ERI_bbbb,C)
|
||||
|
||||
!call matout(nPt,nPt,C)
|
||||
!write(*,*) 'Hello'
|
||||
call unrestricted_linear_response_B_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPt,nHaa,&
|
||||
nHab,nHbb,nHt,lambda,ERI_aaaa,ERI_aabb,ERI_bbbb,B)
|
||||
|
||||
!call matout(nPt,nHt,B)
|
||||
!write(*,*) 'Hello'
|
||||
call unrestricted_linear_response_D_pp(ispin,nBas,nC,nO,nV,nR,nHaa,nHab,nHbb,nHt,lambda,&
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,D)
|
||||
|
||||
!call matout(nHt,nHt,D)
|
||||
!write(*,*) 'Hello'
|
||||
! Diagonal blocks
|
||||
|
||||
M( 1:nPt , 1:nPt) = + C(1:nPt,1:nPt)
|
||||
@ -80,23 +87,27 @@ ERI_aaaa,ERI_aabb,ERI_bbbb,D)
|
||||
M( 1:nPt ,nPt+1:nHt+nPt) = - B(1:nPt,1:nHt)
|
||||
M(nPt+1:nHt+nPt, 1:nPt) = + transpose(B(1:nPt,1:nHt))
|
||||
|
||||
!call matout(nPt+nHt,nPt+nHt,M)
|
||||
|
||||
! Diagonalize the p-h matrix
|
||||
|
||||
if(nHt+nPt > 0) call diagonalize_general_matrix(nHt+nPt,M,Omega,Z)
|
||||
! if(nHt+nPt > 0) call diagonalize_general_matrix(nHt+nPt,M,Omega,Z)
|
||||
|
||||
! Split the various quantities in p-p and h-h parts
|
||||
|
||||
call sort_ppRPA(nHt,nPt,Omega(:),Z(:,:),Omega1(:),X1(:,:),Y1(:,:),Omega2(:),X2(:,:),&
|
||||
Y2(:,:))
|
||||
! call sort_ppRPA(nHt,nPt,Omega(:),Z(:,:),Omega1(:),X1(:,:),Y1(:,:),Omega2(:),X2(:,:),&
|
||||
!Y2(:,:))
|
||||
|
||||
! end if Pourquoi ne faut-il pas de end if ici ?
|
||||
! end if Pourquoi ne faut-il pas de end if ici ?
|
||||
|
||||
! Compute the RPA correlation energy
|
||||
|
||||
EcRPA = 0.5d0*( sum(Omega1(:)) - sum(Omega2(:)) - trace_matrix(nPt,C(:,:)) - trace_matrix(nHt,D(:,:)) )
|
||||
EcRPA1 = +sum(Omega1(:)) - trace_matrix(nPt,C(:,:))
|
||||
EcRPA2 = -sum(Omega2(:)) - trace_matrix(nHt,D(:,:))
|
||||
if(abs(EcRPA - EcRPA1) > 1d-6 .or. abs(EcRPA - EcRPA2) > 1d-6) &
|
||||
print*,'!!! Issue in pp-RPA linear reponse calculation RPA1 != RPA2 !!!'
|
||||
! EcRPA = 0.5d0*( sum(Omega1(:)) - sum(Omega2(:)) - trace_matrix(nPt,C(:,:)) - trace_matrix(nHt,D(:,:)) )
|
||||
! EcRPA1 = +sum(Omega1(:)) - trace_matrix(nPt,C(:,:))
|
||||
! EcRPA2 = -sum(Omega2(:)) - trace_matrix(nHt,D(:,:))
|
||||
! if(abs(EcRPA - EcRPA1) > 1d-6 .or. abs(EcRPA - EcRPA2) > 1d-6) &
|
||||
! print*,'!!! Issue in pp-RPA linear reponse calculation RPA1 != RPA2 !!!'
|
||||
|
||||
|
||||
|
||||
end subroutine unrestricted_linear_response_pp
|
||||
|
@ -25,18 +25,17 @@ subroutine ppURPA(TDA,doACFDT,spin_conserved,spin_flip,nBas,nC,nO,nV,nR,ENuc,EUH
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: ispin
|
||||
integer :: nS
|
||||
integer :: nPaa,nPbb,nPab,nPt
|
||||
integer :: nHaa,nHbb,nHab,nHt
|
||||
double precision,allocatable :: Omega1(:)
|
||||
double precision,allocatable :: X1(:,:)
|
||||
double precision,allocatable :: Y1(:,:)
|
||||
double precision,allocatable :: Omega2(:)
|
||||
double precision,allocatable :: X2(:,:)
|
||||
double precision,allocatable :: Y2(:,:)
|
||||
integer :: ispin
|
||||
integer :: nPaa,nPbb,nPab,nP_sc,nP_sf
|
||||
integer :: nHaa,nHbb,nHab,nH_sc,nH_sf
|
||||
double precision,allocatable :: Omega1sc(:),Omega1sf(:)
|
||||
double precision,allocatable :: X1sc(:,:),X1sf(:,:)
|
||||
double precision,allocatable :: Y1sc(:,:),Y1sf(:,:)
|
||||
double precision,allocatable :: Omega2sc(:),Omega2sf(:)
|
||||
double precision,allocatable :: X2sc(:,:),X2sf(:,:)
|
||||
double precision,allocatable :: Y2sc(:,:),Y2sf(:,:)
|
||||
|
||||
double precision :: Ec_ppRPA(nspin)
|
||||
double precision :: Ec_ppURPA(nspin)
|
||||
double precision :: EcAC(nspin)
|
||||
|
||||
! Hello world
|
||||
@ -49,28 +48,38 @@ subroutine ppURPA(TDA,doACFDT,spin_conserved,spin_flip,nBas,nC,nO,nV,nR,ENuc,EUH
|
||||
|
||||
! Initialization
|
||||
|
||||
Ec_ppRPA(:) = 0d0
|
||||
Ec_ppURPA(:) = 0d0
|
||||
EcAC(:) = 0d0
|
||||
|
||||
! Useful quantities
|
||||
|
||||
!spin-conserved quantities
|
||||
|
||||
nPaa = nV(1)*(nV(1)-1)/2
|
||||
nPab = nV(1)*nV(2)
|
||||
nPbb = nV(2)*nV(2)
|
||||
nPt = nPaa + nPab + nPbb
|
||||
nPbb = nV(2)*(nV(2)-1)/2
|
||||
|
||||
nP_sc = nPaa + nPbb
|
||||
|
||||
nHaa = nO(1)*(nO(1)-1)/2
|
||||
nHab = nO(1)*nO(2)
|
||||
nHbb = nO(2)*nO(2)
|
||||
nHt = nHaa + nHab + nHbb
|
||||
nHbb = nO(2)*(nO(2)-1)/2
|
||||
|
||||
nH_sc = nHaa + nHbb
|
||||
|
||||
!spin-flip quantities
|
||||
|
||||
nPab = nV(1)*nV(2)
|
||||
nHab = nO(1)*nO(2)
|
||||
|
||||
nP_sf = nPab
|
||||
nH_sf = nPab
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(Omega1(nPt),X1(nPt,nPt),Y1(nHt,nPt), &
|
||||
Omega2(nHt),X2(nPt,nHt),Y2(nHt,nHt))
|
||||
allocate(Omega1sc(nP_sc),X1sc(nP_sc,nP_sc),Y1sc(nH_sc,nP_sc), &
|
||||
Omega2sc(nH_sc),X2sc(nP_sc,nH_sc),Y2sc(nH_sc,nH_sc))
|
||||
|
||||
! allocate(Omega1t(nVVt),X1t(nVVt,nVVt),Y1t(nOOt,nVVt), &
|
||||
! Omega2t(nOOt),X2t(nVVt,nOOt),Y2t(nOOt,nOOt))
|
||||
allocate(Omega1sf(nP_sf),X1sf(nP_sf,nP_sf),Y1sf(nH_sf,nP_sf), &
|
||||
Omega2sf(nH_sf),X2sf(nP_sf,nH_sf),Y2sf(nH_sf,nH_sf))
|
||||
|
||||
! Spin-conserved manifold
|
||||
|
||||
@ -78,11 +87,12 @@ subroutine ppURPA(TDA,doACFDT,spin_conserved,spin_flip,nBas,nC,nO,nV,nR,ENuc,EUH
|
||||
|
||||
ispin = 1
|
||||
|
||||
! call linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nOOs,nVVs,1d0,e,ERI, &
|
||||
! Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,Ec_ppRPA(ispin))
|
||||
|
||||
! call print_excitation('pp-RPA (N+2)',5,nVVs,Omega1s)
|
||||
! call print_excitation('pp-RPA (N-2)',5,nOOs,Omega2s)
|
||||
call unrestricted_linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nP_sc, &
|
||||
nHaa,nHab,nHbb,nH_sc,1d0,e,ERI_aaaa,ERI_aabb,ERI_bbbb,Omega1sc,X1sc,Y1sc,Omega2sc,X2sc,Y2sc,&
|
||||
Ec_ppURPA(ispin))
|
||||
write(*,*) 'Hello!'
|
||||
call print_excitation('pp-RPA (N+2)',5,nP_sc,Omega1sc)
|
||||
call print_excitation('pp-RPA (N-2)',5,nH_sc,Omega2sc)
|
||||
|
||||
endif
|
||||
|
||||
@ -92,20 +102,21 @@ subroutine ppURPA(TDA,doACFDT,spin_conserved,spin_flip,nBas,nC,nO,nV,nR,ENuc,EUH
|
||||
|
||||
ispin = 2
|
||||
|
||||
! call linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nOOt,nVVt,1d0,e,ERI, &
|
||||
! Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,Ec_ppRPA(ispin))
|
||||
call unrestricted_linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nP_sf, &
|
||||
nHaa,nHab,nHbb,nH_sf,1d0,e,ERI_aaaa,ERI_aabb,ERI_bbbb,Omega1sf,X1sf,Y1sf,Omega2sf,X2sf,Y2sf,&
|
||||
Ec_ppURPA(ispin))
|
||||
|
||||
! call print_excitation('pp-RPA (N+2)',6,nVVt,Omega1t)
|
||||
! call print_excitation('pp-RPA (N-2)',6,nOOt,Omega2t)
|
||||
call print_excitation('pp-RPA (N+2)',6,nP_sf,Omega1sf)
|
||||
call print_excitation('pp-RPA (N-2)',6,nH_sf,Omega2sf)
|
||||
|
||||
endif
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA correlation energy (spin-conserved) =',Ec_ppRPA(1)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA correlation energy (spin-flip) =',3d0*Ec_ppRPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA correlation energy =',Ec_ppRPA(1) + 3d0*Ec_ppRPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA total energy =',ENuc + EUHF + Ec_ppRPA(1) + 3d0*Ec_ppRPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA correlation energy (spin-conserved) =',Ec_ppURPA(1)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA correlation energy (spin-flip) =',3d0*Ec_ppURPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA correlation energy =',Ec_ppURPA(1) + 3d0*Ec_ppURPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA total energy =',ENuc + EUHF + Ec_ppURPA(1) + 3d0*Ec_ppURPA(2)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user