4
1
mirror of https://github.com/pfloos/quack synced 2025-01-07 03:43:23 +01:00

evGGF2 and evGGW

This commit is contained in:
Pierre-Francois Loos 2023-10-27 13:56:53 +02:00
parent a60aa8d8ee
commit 4c9841c5cd
14 changed files with 860 additions and 33 deletions

View File

@ -11,7 +11,7 @@
# phRPA phRPAx crRPA ppRPA # phRPA phRPAx crRPA ppRPA
F F F F F F F F
# G0F2 evGF2 qsGF2 G0F3 evGF3 # G0F2 evGF2 qsGF2 G0F3 evGF3
F F F F F F T F F F
# G0W0 evGW qsGW SRG-qsGW ufG0W0 ufGW # G0W0 evGW qsGW SRG-qsGW ufG0W0 ufGW
F F F F F F F F F F F F
# G0T0pp evGTpp qsGTpp G0T0eh evGTeh qsGTeh # G0T0pp evGTpp qsGTpp G0T0eh evGTeh qsGTeh

View File

@ -15,4 +15,4 @@
# ACFDT: AC Kx XBS # ACFDT: AC Kx XBS
F F T F F T
# BSE: phBSE phBSE2 ppBSE dBSE dTDA # BSE: phBSE phBSE2 ppBSE dBSE dTDA
T F F F T F F F F T

View File

@ -82,7 +82,7 @@ subroutine G0F2(dophBSE,doppBSE,TDA,dBSE,dTDA,singlet,triplet,linearize,eta,regu
! Print results ! Print results
call MP2(regularize,nBas,nC,nO,nV,nR,ERI,ENuc,EHF,eGF,Ec) call MP2(regularize,nBas,nC,nO,nV,nR,ERI,ENuc,ERHF,eGF,Ec)
call print_G0F2(nBas,nO,eHF,SigC,eGF,Z,ENuc,ERHF,Ec) call print_G0F2(nBas,nO,eHF,SigC,eGF,Z,ENuc,ERHF,Ec)
! Perform BSE2 calculation ! Perform BSE2 calculation
@ -96,7 +96,7 @@ subroutine G0F2(dophBSE,doppBSE,TDA,dBSE,dTDA,singlet,triplet,linearize,eta,regu
write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 correlation energy (singlet) =',EcBSE(1) write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 correlation energy (singlet) =',EcBSE(1)
write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 correlation energy (triplet) =',EcBSE(2) write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 correlation energy (triplet) =',EcBSE(2)
write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 correlation energy =',sum(EcBSE(:)) write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 correlation energy =',sum(EcBSE(:))
write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 total energy =',ENuc + EHF + sum(EcBSE(:)) write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 total energy =',ENuc + ERHF + sum(EcBSE(:))
write(*,*)'-------------------------------------------------------------------------------' write(*,*)'-------------------------------------------------------------------------------'
write(*,*) write(*,*)

View File

@ -31,7 +31,7 @@ subroutine GG0F2(dophBSE,doppBSE,TDA,dBSE,dTDA,linearize,eta,regularize, &
! Local variables ! Local variables
double precision :: Ec double precision :: Ec
double precision :: EcBSE(nspin) double precision :: EcBSE
double precision,allocatable :: eGFlin(:) double precision,allocatable :: eGFlin(:)
double precision,allocatable :: eGF(:) double precision,allocatable :: eGF(:)
double precision,allocatable :: SigC(:) double precision,allocatable :: SigC(:)
@ -85,33 +85,29 @@ subroutine GG0F2(dophBSE,doppBSE,TDA,dBSE,dTDA,linearize,eta,regularize, &
! Perform BSE2 calculation ! Perform BSE2 calculation
! if(dophBSE) then if(dophBSE) then
!
! call GF2_phBSE2(TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,EcBSE)
! write(*,*) call GGF2_phBSE2(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,EcBSE)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 correlation energy (singlet) =',EcBSE(1)
! write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 correlation energy (triplet) =',EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 correlation energy =',sum(EcBSE(:))
! write(*,'(2X,A50,F20.10)') 'Tr@phBSE@G0F2 total energy =',ENuc + EHF + sum(EcBSE(:))
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phBSE@GG0F2 correlation energy =',EcBSE,' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phBSE@GG0F2 total energy =',ENuc + EHF + EcBSE,' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
! Perform ppBSE2 calculation ! Perform ppBSE2 calculation
! if(doppBSE) then ! if(doppBSE) then
! !
! call GF2_ppBSE2(TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,ERI,dipole_int,eGF,EcBSE) ! call GGF2_ppBSE2(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,ERI,dipole_int,eGF,EcBSE)
! write(*,*) ! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------' ! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0F2 correlation energy (singlet) =',EcBSE(1),' au' ! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@GG0F2 correlation energy =',EcBSE,' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0F2 correlation energy (triplet) =',3d0*EcBSE(2),' au' ! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@GG0F2 total energy =',ENuc + ERHF + EcBSE,' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0F2 correlation energy =',EcBSE(1) + 3d0*EcBSE(2),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@G0F2 total energy =',ENuc + ERHF + EcBSE(1) + 3d0*EcBSE(2),' au'
! write(*,*)'-------------------------------------------------------------------------------' ! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*) ! write(*,*)

View File

@ -78,9 +78,8 @@ subroutine GGF(doG0F2,doevGF2,doqsGF2,maxSCF,thresh,max_diis,dophBSE,doppBSE,TDA
if(doevGF2) then if(doevGF2) then
call wall_time(start_GF) call wall_time(start_GF)
! call evGGF2(dophBSE,doppBSE,TDA,dBSE,dTDA,maxSCF,thresh,max_diis, & call evGGF2(dophBSE,doppBSE,TDA,dBSE,dTDA,maxSCF,thresh,max_diis,linearize,eta,regularize, &
! linearize,eta,regularize,nBas,nC,nO,nV,nR,nS,ENuc,EHF, & nBas,nC,nO,nV,nR,nS,ENuc,EHF,ERI,dipole_int,epsHF)
! ERI,dipole_int,epsHF)
call wall_time(end_GF) call wall_time(end_GF)
t_GF = end_GF - start_GF t_GF = end_GF - start_GF

71
src/GF/GGF2_phBSE2.f90 Normal file
View File

@ -0,0 +1,71 @@
subroutine GGF2_phBSE2(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,EcBSE)
! Compute the second-order Bethe-Salpeter excitation energies
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: eGF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
! Local variables
logical :: dRPA = .false.
integer :: ispin
double precision,allocatable :: OmBSE(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
double precision,allocatable :: A_sta(:,:)
double precision,allocatable :: B_sta(:,:)
double precision,allocatable :: KA_sta(:,:)
double precision,allocatable :: KB_sta(:,:)
! Output variables
double precision,intent(out) :: EcBSE
! Memory allocation
allocate(OmBSE(nS),XpY(nS,nS),XmY(nS,nS),A_sta(nS,nS),KA_sta(nS,nS))
allocate(B_sta(nS,nS),KB_sta(nS,nS))
ispin = 3
EcBSE = 0d0
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,eGF,ERI,A_sta)
if(.not.TDA) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,B_sta)
! Compute static kernel
call GF2_phBSE2_static_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,eGF,KA_sta)
if(.not.TDA) call GF2_phBSE2_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,1d0,ERI,eGF,KB_sta)
A_sta(:,:) = A_sta(:,:) + KA_sta(:,:)
if(.not.TDA) B_sta(:,:) = B_sta(:,:) + KB_sta(:,:)
! Compute phBSE2@GF2 excitation energies
call phLR(TDA,nS,A_sta,B_sta,EcBSE,OmBSE,XpY,XmY)
call print_excitation_energies('phBSE2@GGF2',ispin,nS,OmBSE)
call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,OmBSE,XpY,XmY)
! Compute dynamic correction for BSE via perturbation theory
! if(dBSE) &
! call GF2_phBSE2_dynamic_perturbation(dTDA,ispin,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,KA_sta,KB_sta,OmBSE,XpY,XmY)
end subroutine

View File

@ -0,0 +1,162 @@
subroutine GGF2_phBSE2_static_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,eGF,KA_sta)
! Compute the resonant part of the static BSE2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
! Local variables
double precision :: dem,num
integer :: i,j,k,l
integer :: a,b,c,d
integer :: ia,jb
! Output variables
double precision,intent(out) :: KA_sta(nS,nS)
! Initialization
KA_sta(:,:) = 0d0
! Second-order correlation kernel for the block A of the singlet manifold
if(ispin == 1) then
jb = 0
!$omp parallel do default(private) shared(KA_sta,ERI,num,dem,eGF,nO,nBas,eta,nC,nR)
! do j=nC+1,nO
! do b=nO+1,nBas-nR
! jb = (b-nO) + (j-1)*(nBas-nO)
!
! ia = 0
! do i=nC+1,nO
! do a=nO+1,nBas-nR
! ia = (a-nO) + (i-1)*(nBas-nO)
!
!
! do k=nC+1,nO
! do c=nO+1,nBas-nR
!
! dem = - (eGF(c) - eGF(k))
! num = 2d0*ERI(j,k,i,c)*ERI(a,c,b,k) - ERI(j,k,i,c)*ERI(a,c,k,b) &
! - ERI(j,k,c,i)*ERI(a,c,b,k) + 2d0*ERI(j,k,c,i)*ERI(a,c,k,b)
! KA_sta(ia,jb) = KA_sta(ia,jb) - num*dem/(dem**2 + eta**2)
!
! dem = + (eGF(c) - eGF(k))
! num = 2d0*ERI(j,c,i,k)*ERI(a,k,b,c) - ERI(j,c,i,k)*ERI(a,k,c,b) &
! - ERI(j,c,k,i)*ERI(a,k,b,c) + 2d0*ERI(j,c,k,i)*ERI(a,k,c,b)
! KA_sta(ia,jb) = KA_sta(ia,jb) + num*dem/(dem**2 + eta**2)
!
! end do
! end do
! do c=nO+1,nBas-nR
! do d=nO+1,nBas-nR
!
! dem = - (eGF(c) + eGF(d))
! num = 2d0*ERI(a,j,c,d)*ERI(c,d,i,b) - ERI(a,j,c,d)*ERI(c,d,b,i) &
! - ERI(a,j,d,c)*ERI(c,d,i,b) + 2d0*ERI(a,j,d,c)*ERI(c,d,b,i)
! KA_sta(ia,jb) = KA_sta(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
!
! end do
! end do
! do k=nC+1,nO
! do l=nC+1,nO
! dem = - (eGF(k) + eGF(l))
! num = 2d0*ERI(a,j,k,l)*ERI(k,l,i,b) - ERI(a,j,k,l)*ERI(k,l,b,i) &
! - ERI(a,j,l,k)*ERI(k,l,i,b) + 2d0*ERI(a,j,l,k)*ERI(k,l,b,i)
! KA_sta(ia,jb) = KA_sta(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
!
! end do
! end do
!
! end do
! end do
! end do
! end do
!$omp end parallel do
! end if
! Second-order correlation kernel for the block A of the triplet manifold
! if(ispin == 2) then
! jb = 0
!$omp parallel do default(private) shared(KA_sta,ERI,num,dem,eGF,nO,nBas,eta,nC,nR)
! do j=nC+1,nO
! do b=nO+1,nBas-nR
! jb = (b-nO) + (j-1)*(nBas-nO)
!
! ia = 0
! do i=nC+1,nO
! do a=nO+1,nBas-nR
! ia = (a-nO) + (i-1)*(nBas-nO)
!
! do k=nC+1,nO
! do c=nO+1,nBas-nR
!
! dem = - (eGF(c) - eGF(k))
! num = 2d0*ERI(j,k,i,c)*ERI(a,c,b,k) - ERI(j,k,i,c)*ERI(a,c,k,b) - ERI(j,k,c,i)*ERI(a,c,b,k)
! KA_sta(ia,jb) = KA_sta(ia,jb) - num*dem/(dem**2 + eta**2)
!
! dem = + (eGF(c) - eGF(k))
! num = 2d0*ERI(j,c,i,k)*ERI(a,k,b,c) - ERI(j,c,i,k)*ERI(a,k,c,b) - ERI(j,c,k,i)*ERI(a,k,b,c)
! KA_sta(ia,jb) = KA_sta(ia,jb) + num*dem/(dem**2 + eta**2)
!
! end do
! end do
! do c=nO+1,nBas-nR
! do d=nO+1,nBas-nR
!
! dem = - (eGF(c) + eGF(d))
! num = ERI(a,j,c,d)*ERI(c,d,b,i) + ERI(a,j,d,c)*ERI(c,d,i,b)
! KA_sta(ia,jb) = KA_sta(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
!
! end do
! end do
! do k=nC+1,nO
! do l=nC+1,nO
! dem = - (eGF(k) + eGF(l))
! num = ERI(a,j,k,l)*ERI(k,l,b,i) + ERI(a,j,l,k)*ERI(k,l,i,b)
! KA_sta(ia,jb) = KA_sta(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
!
! end do
! end do
!
! end do
! end do
! end do
! end do
!$omp end parallel do
end if
end subroutine

View File

@ -0,0 +1,161 @@
subroutine GGF2_phBSE2_static_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,eGF,KB_sta)
! Compute the anti-resonant part of the static BSE2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
! Local variables
double precision :: dem,num
integer :: i,j,k,l
integer :: a,b,c,d
integer :: ia,jb
! Output variables
double precision,intent(out) :: KB_sta(nS,nS)
! Initialization
KB_sta(:,:) = 0d0
! Second-order correlation kernel for the block A of the singlet manifold
if(ispin == 1) then
jb = 0
!$omp parallel do default(private) shared(KB_sta,ERI,num,dem,eGF,nO,nBas,eta,nC,nR)
! do j=nC+1,nO
! do b=nO+1,nBas-nR
! jb = (b-nO) + (j-1)*(nBas-nO)
! ia = 0
! do i=nC+1,nO
! do a=nO+1,nBas-nR
! ia = (a-nO) + (i-1)*(nBas-nO)
!
! do k=nC+1,nO
! do c=nO+1,nBas-nR
!
! dem = + eGF(k) - eGF(c)
! num = 2d0*ERI(b,k,i,c)*ERI(a,c,j,k) - ERI(b,k,i,c)*ERI(a,c,k,j) &
! - ERI(b,k,c,i)*ERI(a,c,j,k) + 2d0*ERI(b,k,c,i)*ERI(a,c,k,j)
! KB_sta(ia,jb) = KB_sta(ia,jb) - num*dem/(dem**2 + eta**2)
!
! dem = - eGF(c) + eGF(k)
! num = 2d0*ERI(b,c,i,k)*ERI(a,k,j,c) - ERI(b,c,i,k)*ERI(a,k,c,j) &
! - ERI(b,c,k,i)*ERI(a,k,j,c) + 2d0*ERI(b,c,k,i)*ERI(a,k,c,j)
! KB_sta(ia,jb) = KB_sta(ia,jb) - num*dem/(dem**2 + eta**2)
!
! end do
! end do
! do c=nO+1,nBas-nR
! do d=nO+1,nBas-nR
!
! dem = - eGF(c) - eGF(d)
! num = 2d0*ERI(a,b,c,d)*ERI(c,d,i,j) - ERI(a,b,c,d)*ERI(c,d,j,i) &
! - ERI(a,b,d,c)*ERI(c,d,i,j) + 2d0*ERI(a,b,d,c)*ERI(c,d,j,i)
! KB_sta(ia,jb) = KB_sta(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
!
! end do
! end do
! do k=nC+1,nO
! do l=nC+1,nO
! dem = + eGF(k) + eGF(l)
! num = 2d0*ERI(a,b,k,l)*ERI(k,l,i,j) - ERI(a,b,k,l)*ERI(k,l,j,i) &
! - ERI(a,b,l,k)*ERI(k,l,i,j) + 2d0*ERI(a,b,l,k)*ERI(k,l,j,i)
! KB_sta(ia,jb) = KB_sta(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
!
! end do
! end do
!
! end do
! end do
! end do
! end do
!$omp end parallel do
! end if
! Second-order correlation kernel for the block A of the triplet manifold
! if(ispin == 2) then
! jb = 0
!$omp parallel do default(private) shared(KB_sta,ERI,num,dem,eGF,nO,nBas,eta,nC,nR)
! do j=nC+1,nO
! do b=nO+1,nBas-nR
! jb = (b-nO) + (j-1)*(nBas-nO)
!
! ia = 0
! do i=nC+1,nO
! do a=nO+1,nBas-nR
! ia = (a-nO) + (i-1)*(nBas-nO)
!
! do k=nC+1,nO
! do c=nO+1,nBas-nR
!
! dem = + eGF(k) - eGF(c)
! num = 2d0*ERI(b,k,i,c)*ERI(a,c,j,k) - ERI(b,k,i,c)*ERI(a,c,k,j) - ERI(b,k,c,i)*ERI(a,c,j,k)
! KB_sta(ia,jb) = KB_sta(ia,jb) - num*dem/(dem**2 + eta**2)
!
! dem = - eGF(c) + eGF(k)
! num = 2d0*ERI(b,c,i,k)*ERI(a,k,j,c) - ERI(b,c,i,k)*ERI(a,k,c,j) - ERI(b,c,k,i)*ERI(a,k,j,c)
! KB_sta(ia,jb) = KB_sta(ia,jb) - num*dem/(dem**2 + eta**2)
!
! end do
! end do
! do c=nO+1,nBas-nR
! do d=nO+1,nBas-nR
!
! dem = - eGF(c) - eGF(d)
! num = ERI(a,b,c,d)*ERI(c,d,j,i) + ERI(a,b,d,c)*ERI(c,d,i,j)
! KB_sta(ia,jb) = KB_sta(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
!
! end do
! end do
! do k=nC+1,nO
! do l=nC+1,nO
! dem = + eGF(k) + eGF(l)
! num = ERI(a,b,k,l)*ERI(k,l,j,i) + ERI(a,b,l,k)*ERI(k,l,i,j)
! KB_sta(ia,jb) = KB_sta(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
!
! end do
! end do
!
! end do
! end do
! end do
! end do
!$omp end parallel do
end if
end subroutine

View File

@ -107,7 +107,7 @@ subroutine evGF2(dophBSE,doppBSE,TDA,dBSE,dTDA,maxSCF,thresh,max_diis,singlet,tr
! Print results ! Print results
call MP2(regularize,nBas,nC,nO,nV,nR,ERI,ENuc,EHF,eGF,Ec) call MP2(regularize,nBas,nC,nO,nV,nR,ERI,ENuc,ERHF,eGF,Ec)
call print_evGF2(nBas,nO,nSCF,Conv,eHF,SigC,Z,eGF,ENuc,ERHF,Ec) call print_evGF2(nBas,nO,nSCF,Conv,eHF,SigC,Z,eGF,ENuc,ERHF,Ec)
! DIIS extrapolation ! DIIS extrapolation
@ -153,7 +153,7 @@ subroutine evGF2(dophBSE,doppBSE,TDA,dBSE,dTDA,maxSCF,thresh,max_diis,singlet,tr
write(*,'(2X,A50,F20.10)') 'Tr@phBSE@evGF2 correlation energy (singlet) =',EcBSE(1) write(*,'(2X,A50,F20.10)') 'Tr@phBSE@evGF2 correlation energy (singlet) =',EcBSE(1)
write(*,'(2X,A50,F20.10)') 'Tr@phBSE@evGF2 correlation energy (triplet) =',EcBSE(2) write(*,'(2X,A50,F20.10)') 'Tr@phBSE@evGF2 correlation energy (triplet) =',EcBSE(2)
write(*,'(2X,A50,F20.10)') 'Tr@phBSE@evGF2 correlation energy =',sum(EcBSE(:)) write(*,'(2X,A50,F20.10)') 'Tr@phBSE@evGF2 correlation energy =',sum(EcBSE(:))
write(*,'(2X,A50,F20.10)') 'Tr@phBSE@evGF2 total energy =',ENuc + EHF + sum(EcBSE(:)) write(*,'(2X,A50,F20.10)') 'Tr@phBSE@evGF2 total energy =',ENuc + ERHF + sum(EcBSE(:))
write(*,*)'-------------------------------------------------------------------------------' write(*,*)'-------------------------------------------------------------------------------'
write(*,*) write(*,*)

173
src/GF/evGGF2.f90 Normal file
View File

@ -0,0 +1,173 @@
subroutine evGGF2(dophBSE,doppBSE,TDA,dBSE,dTDA,maxSCF,thresh,max_diis, &
linearize,eta,regularize,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
! Perform eigenvalue self-consistent second-order Green function calculation
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dophBSE
logical,intent(in) :: doppBSE
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
integer,intent(in) :: maxSCF
double precision,intent(in) :: thresh
integer,intent(in) :: max_diis
logical,intent(in) :: linearize
double precision,intent(in) :: eta
logical,intent(in) :: regularize
integer,intent(in) :: nBas
integer,intent(in) :: nO
integer,intent(in) :: nC
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
! Local variables
integer :: nSCF
integer :: n_diis
double precision :: Ec
double precision :: EcBSE
double precision :: Conv
double precision :: rcond
double precision,allocatable :: eGF(:)
double precision,allocatable :: eOld(:)
double precision,allocatable :: SigC(:)
double precision,allocatable :: Z(:)
double precision,allocatable :: error_diis(:,:)
double precision,allocatable :: e_diis(:,:)
! Hello world
write(*,*)
write(*,*)'************************************************'
write(*,*)'| Second-order Green function calculation |'
write(*,*)'************************************************'
write(*,*)
! Memory allocation
allocate(SigC(nBas),Z(nBas),eGF(nBas),eOld(nBas),error_diis(nBas,max_diis),e_diis(nBas,max_diis))
! Initialization
Conv = 1d0
nSCF = 0
n_diis = 0
e_diis(:,:) = 0d0
error_diis(:,:) = 0d0
eGF(:) = eHF(:)
eOld(:) = eHF(:)
rcond = 0d0
!------------------------------------------------------------------------
! Main SCF loop
!------------------------------------------------------------------------
do while(Conv > thresh .and. nSCF < maxSCF)
! Frequency-dependent second-order contribution
if(regularize) then
! call GGF2_reg_self_energy_diag(eta,nBas,nC,nO,nV,nR,eGF,ERI,SigC,Z)
else
call GGF2_self_energy_diag(eta,nBas,nC,nO,nV,nR,eGF,ERI,SigC,Z)
end if
! Solve the quasi-particle equation
if(linearize) then
else
write(*,*) ' *** Quasiparticle energies obtained by root search (experimental) *** '
write(*,*)
call GGF2_QP_graph(eta,nBas,nC,nO,nV,nR,eHF,ERI,eOld,eOld,eGF,Z)
end if
Conv = maxval(abs(eGF - eOld))
! Print results
call GMP2(regularize,nBas,nC,nO,nV,nR,ERI,ENuc,ERHF,eGF,Ec)
call print_evGF2(nBas,nO,nSCF,Conv,eHF,SigC,Z,eGF,ENuc,ERHF,Ec)
! DIIS extrapolation
n_diis = min(n_diis+1,max_diis)
call DIIS_extrapolation(rcond,nBas,nBas,n_diis,error_diis,e_diis,eGF-eOld,eGF)
if(abs(rcond) < 1d-15) n_diis = 0
eOld(:) = eGF(:)
! Increment
nSCF = nSCF + 1
end do
!------------------------------------------------------------------------
! End main SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF+1) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
! Perform BSE2 calculation
if(dophBSE) then
call GGF2_phBSE2(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGF,EcBSE)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phBSE@evGGF2 correlation energy =',EcBSE,' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phBSE@evGGF2 total energy =',ENuc + ERHF + EcBSE,' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
end if
! Perform ppBSE2 calculation
! if(doppBSE) then
! call GGF2_ppBSE2(TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,ERI,dipole_int,eGF,EcBSE)
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@evGGF2 correlation energy =',EcBSE),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@evGGF2 total energy =',ENuc + ERHF + EcBSE,' au'
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
end subroutine

View File

@ -202,7 +202,7 @@ subroutine GG0W0(doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,d
! end if ! end if
! end if end if
! if(doppBSE) then ! if(doppBSE) then
@ -217,6 +217,6 @@ subroutine GG0W0(doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,d
! write(*,*)'-------------------------------------------------------------------------------' ! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*) ! write(*,*)
end if ! end if
end subroutine end subroutine

View File

@ -88,8 +88,8 @@ subroutine GGW(doG0W0,doevGW,doqsGW,maxSCF,thresh,max_diis,doACFDT, &
if(doevGW) then if(doevGW) then
call wall_time(start_GW) call wall_time(start_GW)
! call evGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,dTDA,doppBSE, & call evGGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,dTDA,doppBSE, &
! linearize,eta,regularize,nBas,nC,nO,nV,nR,nS,ENuc,EHF,ERI,dipole_int,epsHF) linearize,eta,regularize,nBas,nC,nO,nV,nR,nS,ENuc,EHF,ERI,dipole_int,epsHF)
call wall_time(end_GW) call wall_time(end_GW)
t_GW = end_GW - start_GW t_GW = end_GW - start_GW

267
src/GW/evGGW.f90 Normal file
View File

@ -0,0 +1,267 @@
subroutine evGGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA,dBSE,dTDA,doppBSE, &
linearize,eta,regularize,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
! Perform self-consistent eigenvalue-only GW calculation
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: dophBSE
logical,intent(in) :: dophBSE2
logical,intent(in) :: TDA_W
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: doppBSE
logical,intent(in) :: linearize
double precision,intent(in) :: eta
logical,intent(in) :: regularize
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
! Local variables
logical :: linear_mixing
logical :: dRPA = .true.
integer :: ispin
integer :: nSCF
integer :: n_diis
double precision :: rcond
double precision :: Conv
double precision :: EcRPA
double precision :: EcBSE
double precision :: EcGM
double precision :: alpha
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
double precision,allocatable :: error_diis(:,:)
double precision,allocatable :: e_diis(:,:)
double precision,allocatable :: eGW(:)
double precision,allocatable :: eOld(:)
double precision,allocatable :: Z(:)
double precision,allocatable :: SigC(:)
double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
double precision,allocatable :: rho(:,:,:)
! Hello world
write(*,*)
write(*,*)'************************************************'
write(*,*)'| Self-consistent evGW calculation |'
write(*,*)'************************************************'
write(*,*)
! TDA for W
if(TDA_W) then
write(*,*) 'Tamm-Dancoff approximation for dynamic screening!'
write(*,*)
end if
! TDA
if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*)
end if
! Linear mixing
linear_mixing = .false.
alpha = 0.2d0
! Memory allocation
allocate(Aph(nS,nS),Bph(nS,nS),eGW(nBas),eOld(nBas),Z(nBas),SigC(nBas), &
Om(nS),XpY(nS,nS),XmY(nS,nS),rho(nBas,nBas,nS),error_diis(nBas,max_diis),e_diis(nBas,max_diis))
! Initialization
nSCF = 0
ispin = 3
n_diis = 0
Conv = 1d0
e_diis(:,:) = 0d0
error_diis(:,:) = 0d0
eGW(:) = eHF(:)
eOld(:) = eGW(:)
Z(:) = 1d0
rcond = 0d0
!------------------------------------------------------------------------
! Main loop
!------------------------------------------------------------------------
do while(Conv > thresh .and. nSCF <= maxSCF)
! Compute screening
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI,Aph)
if(.not.TDA_W) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,1d0,ERI,Bph)
call phLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
! Compute spectral weights
call GW_excitation_density(nBas,nC,nO,nR,nS,ERI,XpY,rho)
! Compute correlation part of the self-energy
if(regularize) call GW_regularization(nBas,nC,nO,nV,nR,nS,eGW,Om,rho)
call GGW_self_energy_diag(eta,nBas,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
! Solve the quasi-particle equation
if(linearize) then
write(*,*) ' *** Quasiparticle energies obtained by linearization *** '
write(*,*)
eGW(:) = eHF(:) + SigC(:)
else
write(*,*) ' *** Quasiparticle energies obtained by root search (experimental) *** '
write(*,*)
call GGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eOld,eOld,eGW,Z)
end if
! Convergence criteria
Conv = maxval(abs(eGW - eOld))
! Print results
call print_evGW(nBas,nO,nSCF,Conv,eHF,ENuc,ERHF,SigC,Z,eGW,EcRPA,EcGM)
! Linear mixing or DIIS extrapolation
if(linear_mixing) then
eGW(:) = alpha*eGW(:) + (1d0 - alpha)*eOld(:)
else
n_diis = min(n_diis+1,max_diis)
if(abs(rcond) > 1d-7) then
call DIIS_extrapolation(rcond,nBas,nBas,n_diis,error_diis,e_diis,eGW-eOld,eGW)
else
n_diis = 0
end if
end if
! Save quasiparticles energy for next cycle
eOld(:) = eGW(:)
! Increment
nSCF = nSCF + 1
end do
!------------------------------------------------------------------------
! End main loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF+1) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
! Deallocate memory
deallocate(Aph,Bph,eOld,Z,SigC,Om,XpY,XmY,rho,error_diis,e_diis)
! Perform BSE calculation
if(dophBSE) then
call GGW_phBSE(dophBSE2,TDA_W,TDA,dBSE,dTDA,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eGW,eGW,EcBSE)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10)') 'Tr@BSE@evGW correlation energy =',EcBSE
write(*,'(2X,A50,F20.10)') 'Tr@BSE@evGW total energy =',ENuc + ERHF + EcBSE
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the BSE correlation energy via the adiabatic connection
! if(doACFDT) then
! write(*,*) '------------------------------------------------------'
! write(*,*) 'Adiabatic connection version of BSE correlation energy'
! write(*,*) '------------------------------------------------------'
! write(*,*)
! if(doXBS) then
! write(*,*) '*** scaled screening version (XBS) ***'
! write(*,*)
! end if
! call GW_phACFDT(exchange_kernel,doXBS,dRPA,TDA_W,TDA,dophBSE,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI,eGW,eGW,EcBSE)
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10)') 'AC@BSE@evGW correlation energy (singlet) =',EcBSE(1)
! write(*,'(2X,A50,F20.10)') 'AC@BSE@evGW correlation energy (triplet) =',EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'AC@BSE@evGW correlation energy =',EcBSE(1) + EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'AC@BSE@evGW total energy =',ENuc + ERHF + EcBSE(1) + EcBSE(2)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
end if
! if(doppBSE) then
! call GW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nBas,nC,nO,nV,nR,nS,ERI,dipole_int,eHF,eGW,EcBSE)
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10)') 'Tr@ppBSE@evGW correlation energy (singlet) =',EcBSE(1)
! write(*,'(2X,A50,F20.10)') 'Tr@ppBSE@evGW correlation energy (triplet) =',3d0*EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'Tr@ppBSE@evGW correlation energy =',EcBSE(1) + 3d0*EcBSE(2)
! write(*,'(2X,A50,F20.10)') 'Tr@ppBSE@evGW total energy =',ENuc + ERHF + EcBSE(1) + 3d0*EcBSE(2)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
! end if
end subroutine

View File

@ -83,8 +83,6 @@ subroutine print_GHF(nBas,nBas2,nO,e,C,P,ENuc,ET,EV,EJ,EK,EHF,dipole)
end do end do
end do end do
print*,Sx2,Sy2,Sz2
S2 = Sx2 + Sy2 + Sz2 S2 = Sx2 + Sy2 + Sz2
! Dump results ! Dump results