4
1
mirror of https://github.com/pfloos/quack synced 2025-01-08 20:33:30 +01:00

ppBSE@GF2 C and D blocks

This commit is contained in:
Pierre-Francois Loos 2023-07-24 13:02:24 +02:00
parent bd6fdf87f1
commit 4bb6dd20c5
4 changed files with 318 additions and 22 deletions

View File

@ -1,4 +1,4 @@
subroutine GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,eGF,OmBSE,A_dyn,ZA_dyn)
subroutine GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,eGF,OmBSE,KA_dyn,ZA_dyn)
! Compute the resonant part of the dynamic BSE2 matrix
@ -24,12 +24,12 @@ subroutine GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
! Output variables
double precision,intent(out) :: A_dyn(nS,nS)
double precision,intent(out) :: KA_dyn(nS,nS)
double precision,intent(out) :: ZA_dyn(nS,nS)
! Initialization
A_dyn(:,:) = 0d0
KA_dyn(:,:) = 0d0
ZA_dyn(:,:) = 0d0
! Second-order correlation kernel for the block A of the singlet manifold
@ -53,14 +53,14 @@ subroutine GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
num = 2d0*ERI(j,k,i,c)*ERI(a,c,b,k) - ERI(j,k,i,c)*ERI(a,c,k,b) &
- ERI(j,k,c,i)*ERI(a,c,b,k) + 2d0*ERI(j,k,c,i)*ERI(a,c,k,b)
A_dyn(ia,jb) = A_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
KA_dyn(ia,jb) = KA_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE + eGF(i) - eGF(c) + eGF(k) - eGF(b)
num = 2d0*ERI(j,c,i,k)*ERI(a,k,b,c) - ERI(j,c,i,k)*ERI(a,k,c,b) &
- ERI(j,c,k,i)*ERI(a,k,b,c) + 2d0*ERI(j,c,k,i)*ERI(a,k,c,b)
A_dyn(ia,jb) = A_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
KA_dyn(ia,jb) = KA_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
@ -73,7 +73,7 @@ subroutine GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
num = 2d0*ERI(a,j,c,d)*ERI(c,d,i,b) - ERI(a,j,c,d)*ERI(c,d,b,i) &
- ERI(a,j,d,c)*ERI(c,d,i,b) + 2d0*ERI(a,j,d,c)*ERI(c,d,b,i)
A_dyn(ia,jb) = A_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
KA_dyn(ia,jb) = KA_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
@ -86,7 +86,7 @@ subroutine GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
num = 2d0*ERI(a,j,k,l)*ERI(k,l,i,b) - ERI(a,j,k,l)*ERI(k,l,b,i) &
- ERI(a,j,l,k)*ERI(k,l,i,b) + 2d0*ERI(a,j,l,k)*ERI(k,l,b,i)
A_dyn(ia,jb) = A_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
KA_dyn(ia,jb) = KA_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
@ -122,13 +122,13 @@ subroutine GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
dem = OmBSE - eGF(a) + eGF(k) - eGF(c) + eGF(j)
num = 2d0*ERI(j,k,i,c)*ERI(a,c,b,k) - ERI(j,k,i,c)*ERI(a,c,k,b) - ERI(j,k,c,i)*ERI(a,c,b,k)
A_dyn(ia,jb) = A_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
KA_dyn(ia,jb) = KA_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE + eGF(i) - eGF(c) + eGF(k) - eGF(b)
num = 2d0*ERI(j,c,i,k)*ERI(a,k,b,c) - ERI(j,c,i,k)*ERI(a,k,c,b) - ERI(j,c,k,i)*ERI(a,k,b,c)
A_dyn(ia,jb) = A_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
KA_dyn(ia,jb) = KA_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
@ -140,7 +140,7 @@ subroutine GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
dem = OmBSE + eGF(i) + eGF(j) - eGF(c) - eGF(d)
num = ERI(a,j,c,d)*ERI(c,d,b,i) + ERI(a,j,d,c)*ERI(c,d,i,b)
A_dyn(ia,jb) = A_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
KA_dyn(ia,jb) = KA_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
@ -152,7 +152,7 @@ subroutine GF2_phBSE2_dynamic_kernel_A(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
dem = OmBSE - eGF(a) - eGF(b) + eGF(k) + eGF(l)
num = ERI(a,j,k,l)*ERI(k,l,b,i) + ERI(a,j,l,k)*ERI(k,l,i,b)
A_dyn(ia,jb) = A_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
KA_dyn(ia,jb) = KA_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do

View File

@ -1,4 +1,4 @@
subroutine GF2_phBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,eGF,B_dyn)
subroutine GF2_phBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,eGF,KB_dyn)
! Compute the anti-resonant part of the dynamic BSE2 matrix
@ -23,18 +23,18 @@ subroutine GF2_phBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
! Output variables
double precision,intent(out) :: B_dyn(nS,nS)
double precision,intent(out) :: KB_dyn(nS,nS)
! Initialization
B_dyn(:,:) = 0d0
KB_dyn(:,:) = 0d0
! Second-order correlation kernel for the block A of the singlet manifold
if(ispin == 1) then
jb = 0
!$omp parallel do default(private) shared(B_dyn,ERI,num,dem,eGF,nO,nBas,eta,nC,nR)
!$omp parallel do default(private) shared(KB_dyn,ERI,num,dem,eGF,nO,nBas,eta,nC,nR)
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = (b-nO) + (j-1)*(nBas-nO)
@ -51,13 +51,13 @@ subroutine GF2_phBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
num = 2d0*ERI(b,k,i,c)*ERI(a,c,j,k) - ERI(b,k,i,c)*ERI(a,c,k,j) &
- ERI(b,k,c,i)*ERI(a,c,j,k) + 2d0*ERI(b,k,c,i)*ERI(a,c,k,j)
B_dyn(ia,jb) = B_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
KB_dyn(ia,jb) = KB_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
dem = + eGF(i) - eGF(c) + eGF(k) - eGF(b)
num = 2d0*ERI(b,c,i,k)*ERI(a,k,j,c) - ERI(b,c,i,k)*ERI(a,k,c,j) &
- ERI(b,c,k,i)*ERI(a,k,j,c) + 2d0*ERI(b,c,k,i)*ERI(a,k,c,j)
B_dyn(ia,jb) = B_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
KB_dyn(ia,jb) = KB_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
end do
end do
@ -69,7 +69,7 @@ subroutine GF2_phBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
num = 2d0*ERI(a,b,c,d)*ERI(c,d,i,j) - ERI(a,b,c,d)*ERI(c,d,j,i) &
- ERI(a,b,d,c)*ERI(c,d,i,j) + 2d0*ERI(a,b,d,c)*ERI(c,d,j,i)
B_dyn(ia,jb) = B_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
KB_dyn(ia,jb) = KB_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
end do
end do
@ -81,7 +81,7 @@ subroutine GF2_phBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
num = 2d0*ERI(a,b,k,l)*ERI(k,l,i,j) - ERI(a,b,k,l)*ERI(k,l,j,i) &
- ERI(a,b,l,k)*ERI(k,l,i,j) + 2d0*ERI(a,b,l,k)*ERI(k,l,j,i)
B_dyn(ia,jb) = B_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
KB_dyn(ia,jb) = KB_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
end do
end do
@ -116,7 +116,7 @@ subroutine GF2_phBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
dem = - eGF(a) + eGF(k) - eGF(c) + eGF(j)
num = 2d0*ERI(b,k,i,c)*ERI(a,c,j,k) - ERI(b,k,i,c)*ERI(a,c,k,j) - ERI(b,k,c,i)*ERI(a,c,j,k)
B_dyn(ia,jb) = B_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
KB_dyn(ia,jb) = KB_dyn(ia,jb) - num*dem/(dem**2 + eta**2)
dem = + eGF(i) - eGF(c) + eGF(k) - eGF(b)
num = 2d0*ERI(b,c,i,k)*ERI(a,k,j,c) - ERI(b,c,i,k)*ERI(a,k,c,j) - ERI(b,c,k,i)*ERI(a,k,j,c)
@ -132,7 +132,7 @@ subroutine GF2_phBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
dem = + eGF(i) + eGF(j) - eGF(c) - eGF(d)
num = ERI(a,b,c,d)*ERI(c,d,j,i) + ERI(a,b,d,c)*ERI(c,d,i,j)
B_dyn(ia,jb) = B_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
KB_dyn(ia,jb) = KB_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
end do
end do
@ -143,7 +143,7 @@ subroutine GF2_phBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,
dem = - eGF(a) - eGF(b) + eGF(k) + eGF(l)
num = ERI(a,b,k,l)*ERI(k,l,j,i) + ERI(a,b,l,k)*ERI(k,l,i,j)
B_dyn(ia,jb) = B_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
KB_dyn(ia,jb) = KB_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
end do
end do

View File

@ -0,0 +1,148 @@
subroutine GF2_ppBSE2_dynamic_kernel_C(ispin,eta,nBas,nC,nO,nV,nR,nVV,lambda,ERI,eGF,OmBSE,KC_dyn,ZC_dyn)
! Compute the resonant part of the dynamic BSE2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nVV
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
double precision,intent(in) :: OmBSE
! Local variables
double precision :: dem,num
integer :: m
integer :: a,b,c,d,e
integer :: ab,cd
! Output variables
double precision,intent(out) :: KC_dyn(nVV,nVV)
double precision,intent(out) :: ZC_dyn(nVV,nVV)
! Initialization
KC_dyn(:,:) = 0d0
ZC_dyn(:,:) = 0d0
! Second-order correlation kernel for the block C of the singlet manifold
if(ispin == 1) then
ab = 0
do a=nO+1,nBas-nR
do b=a,nBas-nR
ab = ab + 1
cd = 0
do c=nO+1,nBas-nR
do d=c,nBas-nR
cd = cd + 1
do m=nC+1,nO
do e=nO+1,nBas-nR
dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(b)
num = 2d0*ERI(a,m,c,e)*ERI(b,e,d,m) - ERI(a,m,c,e)*ERI(b,e,m,d) &
- ERI(a,m,e,c)*ERI(b,e,d,m) + 2d0*ERI(a,m,e,c)*ERI(b,e,m,d)
KC_dyn(ia,jb) = KC_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ia,jb) = ZC_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(a)
num = 2d0*ERI(b,m,c,e)*ERI(a,e,d,m) - ERI(b,m,c,e)*ERI(a,e,m,d) &
- ERI(b,m,e,c)*ERI(a,e,d,m) + 2d0*ERI(b,m,e,c)*ERI(a,e,m,d)
KC_dyn(ia,jb) = KC_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ia,jb) = ZC_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(a)
num = 2d0*ERI(a,e,c,m)*ERI(b,m,d,e) - ERI(a,e,c,m)*ERI(b,m,e,d) &
- ERI(a,e,m,c)*ERI(b,m,d,e) + 2d0*ERI(a,e,m,c)*ERI(b,m,e,d)
KC_dyn(ia,jb) = KC_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ia,jb) = ZC_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(d) + eGF(m) - eGF(e) - eGF(b)
num = 2d0*ERI(b,e,c,m)*ERI(a,m,d,e) - ERI(b,e,c,m)*ERI(a,m,e,d) &
- ERI(b,e,m,c)*ERI(a,m,d,e) + 2d0*ERI(b,e,c,m)*ERI(a,m,e,d)
KC_dyn(ia,jb) = KC_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ia,jb) = ZC_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
end do
end do
end do
end do
end do
end if
! Second-order correlation kernel for the block C of the triplet manifold
if(ispin == 2) then
ab = 0
do a=nO+1,nBas-nR
do b=a+1,nBas-nR
ab = ab + 1
cd = 0
do c=nO+1,nBas-nR
do d=c+1,nBas-nR
cd = cd + 1
do m=nC+1,nO
do e=nO+1,nBas-nR
dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(b)
num = 2d0*ERI(a,m,c,e)*ERI(b,e,d,m) - ERI(a,m,c,e)*ERI(b,e,m,d) - ERI(a,m,e,c)*ERI(b,e,d,m)
KC_dyn(ia,jb) = KC_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ia,jb) = ZC_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(a)
num = 2d0*ERI(b,m,c,e)*ERI(a,e,d,m) - ERI(b,m,c,e)*ERI(a,e,m,d) - ERI(b,m,e,c)*ERI(a,e,d,m)
KC_dyn(ia,jb) = KC_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ia,jb) = ZC_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(c) + eGF(m) - eGF(e) - eGF(a)
num = 2d0*ERI(a,e,c,m)*ERI(b,m,d,e) - ERI(a,e,c,m)*ERI(b,m,e,d) - ERI(a,e,m,c)*ERI(b,m,d,e)
KC_dyn(ia,jb) = KC_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ia,jb) = ZC_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = OmBSE - eGF(d) + eGF(m) - eGF(e) - eGF(b)
num = 2d0*ERI(b,e,c,m)*ERI(a,m,d,e) - ERI(b,e,c,m)*ERI(a,m,e,d) - ERI(b,e,m,c)*ERI(a,m,d,e)
KC_dyn(ia,jb) = KC_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
ZC_dyn(ia,jb) = ZC_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
end do
end do
end do
end do
end do
end if
end subroutine

View File

@ -0,0 +1,148 @@
subroutine GF2_ppBSE2_dynamic_kernel_D(ispin,eta,nBas,nC,nO,nV,nR,nOO,lambda,ERI,eGF,OmBSE,KD_dyn,ZD_dyn)
! Compute the resonant part of the dynamic BSE2 matrix
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nOO
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: eGF(nBas)
double precision,intent(in) :: OmBSE
! Local variables
double precision :: dem,num
integer :: i,j,k,l,m
integer :: e
integer :: ij,kl
! Output variables
double precision,intent(out) :: KC_dyn(nOO,nOO)
double precision,intent(out) :: ZC_dyn(nOO,nOO)
! Initialization
KD_dyn(:,:) = 0d0
ZD_dyn(:,:) = 0d0
! Second-order correlation kernel for the block D of the singlet manifold
if(ispin == 1) then
ij = 0
do i=nC+1,nO
do j=i,nO
ij = ij + 1
kl = 0
do k=nC+1,nO
do l=k,nO
kl = kl + 1
do m=nC+1,nO
do e=nO+1,nBas-nR
dem = - OmBSE + eGF(k) - eGF(e) + eGF(m) + eGF(j)
num = 2d0*ERI(i,e,k,m)*ERI(j,m,l,e) - ERI(i,e,k,m)*ERI(j,m,e,l) &
- ERI(i,e,m,k)*ERI(j,m,l,e) + 2d0*ERI(i,e,m,k)*ERI(j,m,e,l)
KD_dyn(ia,jb) = KD_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
ZD_dyn(ia,jb) = ZD_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = - OmBSE + eGF(k) - eGF(e) + eGF(m) + eGF(i)
num = 2d0*ERI(j,e,k,m)*ERI(i,m,l,e) - ERI(j,e,k,m)*ERI(i,m,e,l) &
- ERI(j,e,m,k)*ERI(i,m,l,e) + 2d0*ERI(j,e,m,k)*ERI(i,m,e,l)
KD_dyn(ia,jb) = KD_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
ZD_dyn(ia,jb) = ZD_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = - OmBSE + eGF(l) - eGF(e) + eGF(m) + eGF(i)
num = 2d0*ERI(i,m,k,e)*ERI(j,e,l,m) - ERI(i,m,k,e)*ERI(j,e,m,l) &
- ERI(i,m,e,k)*ERI(j,e,l,m) + 2d0*ERI(i,m,e,k)*ERI(j,e,m,l)
KD_dyn(ia,jb) = KD_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
ZD_dyn(ia,jb) = ZD_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = - OmBSE + eGF(l) - eGF(e) + eGF(m) + eGF(j)
num = 2d0*ERI(j,m,k,e)*ERI(i,e,l,m) - ERI(j,m,k,e)*ERI(i,e,m,l) &
- ERI(j,m,e,k)*ERI(i,e,l,m) + 2d0*ERI(j,m,e,k)*ERI(i,e,m,l)
KD_dyn(ia,jb) = KD_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
ZD_dyn(ia,jb) = ZD_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
end do
end do
end do
end do
end do
end if
! Second-order correlation kernel for the block D of the triplet manifold
if(ispin == 2) then
ij = 0
do i=nC+1,nO
do j=i+1,nO
ij = ij + 1
kl = 0
do k=nC+1,nO
do l=k+1,nO
kl = kl + 1
do m=nC+1,nO
do e=nO+1,nBas-nR
dem = - OmBSE + eGF(k) - eGF(e) + eGF(m) + eGF(j)
num = 2d0*ERI(i,e,k,m)*ERI(j,m,l,e) - ERI(i,e,k,m)*ERI(j,m,e,l) - ERI(i,e,m,k)*ERI(j,m,l,e)
KD_dyn(ia,jb) = KD_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
ZD_dyn(ia,jb) = ZD_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = - OmBSE + eGF(k) - eGF(e) + eGF(m) + eGF(i)
num = 2d0*ERI(j,e,k,m)*ERI(i,m,l,e) - ERI(j,e,k,m)*ERI(i,m,e,l) - ERI(j,e,m,k)*ERI(i,m,l,e)
KD_dyn(ia,jb) = KD_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
ZD_dyn(ia,jb) = ZD_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = - OmBSE + eGF(l) - eGF(e) + eGF(m) + eGF(i)
num = 2d0*ERI(i,m,k,e)*ERI(j,e,l,m) - ERI(i,m,k,e)*ERI(j,e,m,l) - ERI(i,m,e,k)*ERI(j,e,l,m)
KD_dyn(ia,jb) = KD_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2)
ZD_dyn(ia,jb) = ZD_dyn(ia,jb) - 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
dem = - OmBSE + eGF(l) - eGF(e) + eGF(m) + eGF(j)
num = 2d0*ERI(j,m,k,e)*ERI(i,e,l,m) - ERI(j,m,k,e)*ERI(i,e,m,l) - ERI(j,m,e,k)*ERI(i,e,l,m)
KD_dyn(ia,jb) = KD_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2)
ZD_dyn(ia,jb) = ZD_dyn(ia,jb) + 0.5d0*num*(dem**2 - eta**2)/(dem**2 + eta**2)**2
end do
end do
end do
end do
end do
end do
end if
end subroutine