4
1
mirror of https://github.com/pfloos/quack synced 2025-01-05 02:48:57 +01:00

working on dRPA (with no TDA) on GPU: saving

This commit is contained in:
AbdAmmar 2024-11-29 13:58:52 +01:00
parent 1235823334
commit 3c8f8291bd
7 changed files with 391 additions and 107 deletions

View File

@ -4,50 +4,41 @@ module cu_quack_module
implicit none implicit none
!#ifdef USE_GPU
! interface
! subroutine ph_drpa_tda_sing(nO, nBas, nS, eps, ERI, &
! Omega, X) bind(C, name = "ph_drpa_tda_sing")
!
! import c_int, c_double
! integer(c_int), intent(in), value :: nO, nBas, nS
! real(c_double), intent(in) :: eps(nBas)
! real(c_double), intent(in) :: ERI(nBas,nBas,nBas,nBas)
! real(c_double), intent(out) :: Omega(nS)
! real(c_double), intent(out) :: X(nS,nS)
!
! end subroutine ph_drpa_tda_sing
! end interface
!#else
! interface
! subroutine ph_drpa_tda_sing(nO, nBas, nS, eps, ERI, Omega, X)
! integer, intent(in) :: nO, nBas, nS
! double precision, intent(in) :: eps(nBas)
! double precision, intent(in) :: ERI(nBas,nBas,nBas,nBas)
! double precision, intent(out) :: Omega(nS)
! double precision, intent(out) :: X(nS,nS)
! end subroutine ph_drpa_tda_sing
! end interface
!#endif
interface interface
! ---
subroutine ph_drpa_tda_sing(nO, nBas, nS, eps, ERI, & subroutine ph_drpa_tda_sing(nO, nBas, nS, eps, ERI, &
Omega, X) bind(C, name = "ph_drpa_tda_sing") Omega, XpY) bind(C, name = "ph_drpa_tda_sing")
import c_int, c_double import c_int, c_double
integer(c_int), intent(in), value :: nO, nBas, nS integer(c_int), intent(in), value :: nO, nBas, nS
real(c_double), intent(in) :: eps(nBas) real(c_double), intent(in) :: eps(nBas)
real(c_double), intent(in) :: ERI(nBas,nBas,nBas,nBas) real(c_double), intent(in) :: ERI(nBas,nBas,nBas,nBas)
real(c_double), intent(out) :: Omega(nS) real(c_double), intent(out) :: Omega(nS)
real(c_double), intent(out) :: X(nS,nS) real(c_double), intent(out) :: XpY(nS,nS)
end subroutine ph_drpa_tda_sing end subroutine ph_drpa_tda_sing
end interface ! ---
subroutine ph_drpa_sing(nO, nBas, nS, eps, ERI, &
Omega, XpY, XmY) bind(C, name = "ph_drpa_sing")
import c_int, c_double
integer(c_int), intent(in), value :: nO, nBas, nS
real(c_double), intent(in) :: eps(nBas)
real(c_double), intent(in) :: ERI(nBas,nBas,nBas,nBas)
real(c_double), intent(out) :: Omega(nS)
real(c_double), intent(out) :: XpY(nS,nS)
real(c_double), intent(out) :: XmY(nS,nS)
end subroutine ph_drpa_sing
! --- ! ---
end interface
end module cu_quack_module end module cu_quack_module

View File

@ -83,7 +83,6 @@ subroutine phRRPA(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC,nO,
call phLR(TDA,nS,Aph,Bph,EcRPA(ispin),Om,XpY,XmY) call phLR(TDA,nS,Aph,Bph,EcRPA(ispin),Om,XpY,XmY)
!call wall_time(t2) !call wall_time(t2)
!print *, "wall time diag A on CPU (sec) = ", t2 - t1 !print *, "wall time diag A on CPU (sec) = ", t2 - t1
!stop
call print_excitation_energies('phRPA@RHF','singlet',nS,Om) call print_excitation_energies('phRPA@RHF','singlet',nS,Om)
call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY) call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)

View File

@ -4,16 +4,13 @@ subroutine phRRPA_GPU(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC
use cu_quack_module use cu_quack_module
! Perform a direct random phase approximation calculation
implicit none implicit none
include 'parameters.h' include 'parameters.h'
include 'quadrature.h' include 'quadrature.h'
! Input variables
logical,intent(in) :: dotest logical,intent(in) :: dotest
logical,intent(in) :: TDA logical,intent(in) :: TDA
logical,intent(in) :: doACFDT logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel logical,intent(in) :: exchange_kernel
@ -31,33 +28,25 @@ subroutine phRRPA_GPU(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart) double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
! Local variables
integer :: i integer :: i
integer :: ispin integer :: ispin
logical :: dRPA logical :: dRPA
double precision :: t1, t2 double precision :: t1, t2
double precision :: lambda integer, allocatable :: iorder(:)
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
double precision,allocatable :: Om(:) double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:) double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:) double precision,allocatable :: XmY(:,:)
! DEBUG
!double precision, allocatable :: XpY_gpu(:,:), XmY_gpu(:,:), Om_gpu(:)
double precision :: EcRPA(nspin) double precision :: EcRPA(nspin)
! Hello world
write(*,*) write(*,*)
write(*,*)'*********************************' write(*,*)'******************************************'
write(*,*)'* Restricted ph-RPA Calculation *' write(*,*)'* Restricted ph-RPA Calculation (on GPU) *'
write(*,*)'*********************************' write(*,*)'******************************************'
write(*,*) write(*,*)
! TDA
if(TDA) then if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!' write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*) write(*,*)
@ -67,60 +56,70 @@ subroutine phRRPA_GPU(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC
dRPA = .true. dRPA = .true.
EcRPA(:) = 0d0 EcRPA(:) = 0d0
lambda = 1d0
! Memory allocation
allocate(Om(nS), XpY(nS,nS), XmY(nS,nS)) allocate(Om(nS), XpY(nS,nS), XmY(nS,nS))
!allocate(Aph(nS,nS),Bph(nS,nS))
! Singlet manifold
if(singlet) then if(singlet) then
if(TDA) then if(TDA) then
print*, 'start diag on GPU:' !print*, 'start diag on GPU:'
call wall_time(t1) !call wall_time(t1)
call ph_drpa_tda_sing(nO, nBas, nS, eHF(1), ERI(1,1,1,1), Om(1), XpY(1,1)) call ph_drpa_tda_sing(nO, nBas, nS, eHF(1), ERI(1,1,1,1), Om(1), XpY(1,1))
call wall_time(t2) !call wall_time(t2)
print*, 'diag time on GPU (sec):', t2 - t1 !print*, 'diag time on GPU (sec):', t2 - t1
stop
XmY(:,:) = XpY(:,:) XmY(:,:) = XpY(:,:)
else else
! TODO !print*, 'start diag on GPU:'
!call ph_drpa_sing(nO, nBas, nS, eHF(1), ERI(1,1,1,1), Om(1), XpY(1,1)) !call wall_time(t1)
!XmY(:,:) = XpY(:,:) call ph_drpa_sing(nO, nBas, nS, eHF(1), ERI(1,1,1,1), Om(1), XpY(1,1), XmY(1,1))
!call wall_time(t2)
!print*, 'diag time on GPU (sec):', t2 - t1
endif endif
! TODO
XpY(:,:) = transpose(XpY(:,:))
XmY(:,:) = transpose(XmY(:,:))
call print_excitation_energies('phRPA@RHF','singlet',nS,Om) call print_excitation_energies('phRPA@RHF','singlet',nS,Om)
call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY) call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
endif endif
! Triplet manifold
if(triplet) then if(triplet) then
ispin = 2 XpY(:,:) = 0.d0
allocate(iorder(nS))
ia = 0
do i = nC+1, nO
do a = nO+1, nBas-nR
ia = ia + 1
iorder(ia) = ia
Om(ia) = e(a) - e(i)
XpY(ia,ia) = 1.d0
enddo
enddo
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,eHF,ERI,Aph) call quick_sort(Om(1), iorder(1), nS)
if(.not.TDA) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,ERI,Bph) deallocate(iorder)
XmY(:,:) = XpY(:,:)
call phLR(TDA,nS,Aph,Bph,EcRPA(ispin),Om,XpY,XmY)
call print_excitation_energies('phRPA@RHF','triplet',nS,Om) call print_excitation_energies('phRPA@RHF','triplet',nS,Om)
call phLR_transition_vectors(.false.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY) call phLR_transition_vectors(.false.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
endif endif
if(exchange_kernel) then deallocate(Om, XpY, XmY)
! TODO
! init EcRPA
if(exchange_kernel) then
EcRPA(1) = 0.5d0*EcRPA(1) EcRPA(1) = 0.5d0*EcRPA(1)
EcRPA(2) = 1.5d0*EcRPA(2) EcRPA(2) = 1.5d0*EcRPA(2)
endif endif
write(*,*) write(*,*)
@ -132,12 +131,11 @@ subroutine phRRPA_GPU(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC
write(*,*)'-------------------------------------------------------------------------------' write(*,*)'-------------------------------------------------------------------------------'
write(*,*) write(*,*)
deallocate(Om,XpY,XmY,Aph,Bph)
! Compute the correlation energy via the adiabatic connection ! Compute the correlation energy via the adiabatic connection
if(doACFDT) then if(doACFDT) then
! TODO
call phACFDT(exchange_kernel,dRPA,TDA,singlet,triplet,nBas,nC,nO,nV,nR,nS,ERI,eHF,EcRPA) call phACFDT(exchange_kernel,dRPA,TDA,singlet,triplet,nBas,nC,nO,nV,nR,nS,ERI,eHF,EcRPA)
write(*,*) write(*,*)
@ -152,9 +150,7 @@ subroutine phRRPA_GPU(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC
endif endif
if(dotest) then if(dotest) then
call dump_test_value('R','phRPA correlation energy (on GPU)',sum(EcRPA))
call dump_test_value('R','phRPA correlation energy',sum(EcRPA))
endif endif
end subroutine end subroutine

View File

@ -0,0 +1,88 @@
#include <stdio.h>
__global__ void ph_dRPA_AmB_sing_kernel(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *AmB) {
int i, j, a, b;
int aa, bb;
int nVS;
int nBas2, nBas3;
int i_A0, i_A1, i_A2;
int i_I0, i_I1, i_I2;
bool a_eq_b;
nVS = nV * nS;
nBas2 = nBas * nBas;
nBas3 = nBas2 * nBas;
aa = blockIdx.x * blockDim.x + threadIdx.x;
bb = blockIdx.y * blockDim.y + threadIdx.y;
while(aa < nV) {
a = aa + nO;
i_A0 = aa * nS;
i_I0 = a * nBas2;
while(bb < nV) {
b = bb + nO;
a_eq_b = a == b;
i_A1 = i_A0 + bb;
i_I1 = i_I0 + b * nBas;
i = 0;
while(i < nO) {
i_A2 = i_A1 + i * nVS;
i_I2 = i_I1 + i;
j = 0;
while(j < nO) {
AmB[i_A2 + j * nV] = 2.0 * (ERI[i_I2 + j * nBas3] - ERI[i_I2 + j * nBas]);
if(a_eq_b && (i==j)) {
AmB[i_A2 + j * nV] += eps[a] - eps[i];
}
j ++;
} // j
i ++;
} // i
bb += blockDim.y * gridDim.y;
} // bb
aa += blockDim.x * gridDim.x;
} // aa
}
extern "C" void ph_dRPA_AmB_sing(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *AmB) {
int sBlocks = 32;
int nBlocks = (nV + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching ph_dRPA_AmB_sing_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
ph_dRPA_AmB_sing_kernel<<<dimGrid, dimBlock>>>(nO, nV, nBas, nS, eps, ERI, AmB);
}

View File

@ -0,0 +1,88 @@
#include <stdio.h>
__global__ void ph_dRPA_ApB_sing_kernel(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *ApB) {
int i, j, a, b;
int aa, bb;
int nVS;
int nBas2, nBas3;
int i_A0, i_A1, i_A2;
int i_I0, i_I1, i_I2;
bool a_eq_b;
nVS = nV * nS;
nBas2 = nBas * nBas;
nBas3 = nBas2 * nBas;
aa = blockIdx.x * blockDim.x + threadIdx.x;
bb = blockIdx.y * blockDim.y + threadIdx.y;
while(aa < nV) {
a = aa + nO;
i_A0 = aa * nS;
i_I0 = a * nBas2;
while(bb < nV) {
b = bb + nO;
a_eq_b = a == b;
i_A1 = i_A0 + bb;
i_I1 = i_I0 + b * nBas;
i = 0;
while(i < nO) {
i_A2 = i_A1 + i * nVS;
i_I2 = i_I1 + i;
j = 0;
while(j < nO) {
ApB[i_A2 + j * nV] = 2.0 * (ERI[i_I2 + j * nBas3] + ERI[i_I2 + j * nBas]);
if(a_eq_b && (i==j)) {
ApB[i_A2 + j * nV] += eps[a] - eps[i];
}
j ++;
} // j
i ++;
} // i
bb += blockDim.y * gridDim.y;
} // bb
aa += blockDim.x * gridDim.x;
} // aa
}
extern "C" void ph_dRPA_ApB_sing(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *ApB) {
int sBlocks = 32;
int nBlocks = (nV + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching ph_dRPA_ApB_sing_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
ph_dRPA_ApB_sing_kernel<<<dimGrid, dimBlock>>>(nO, nV, nBas, nS, eps, ERI, ApB);
}

114
src/cuda/src/ph_drpa_sing.c Normal file
View File

@ -0,0 +1,114 @@
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <stdlib.h>
#include <stdio.h>
#include <cublas_v2.h>
#include <cusolverDn.h>
#include "utils.h"
#include "ph_rpa.h"
void ph_drpa_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
double *h_Omega, double *h_XpY, double *h_XmY) {
double *d_eps = NULL;
double *d_ERI = NULL;
int nV = nBas - nO;
long long nBas_long = (long long) nBas;
long long nBas4 = nBas_long * nBas_long * nBas_long * nBas_long;
long long nS_long = (long long) nS;
long long nS2 = nS_long * nS_long;
float elapsedTime;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
check_Cuda_Errors(cudaMalloc((void**)&d_eps, nBas * sizeof(double)),
"cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_ERI, nBas4 * sizeof(double)),
"cudaMalloc", __FILE__, __LINE__);
printf("CPU->GPU transfer..\n");
cudaEventRecord(start, 0);
check_Cuda_Errors(cudaMemcpy(d_eps, h_eps, nBas * sizeof(double), cudaMemcpyHostToDevice),
"cudaMemcpy", __FILE__, __LINE__);
check_Cuda_Errors(cudaMemcpy(d_ERI, h_ERI, nBas4 * sizeof(double), cudaMemcpyHostToDevice),
"cudaMemcpy", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on CPU->GPU transfer = %f msec\n", elapsedTime);
// construct A+B & A-B
double *d_ApB = NULL;
double *d_AmB = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_ApB, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_A-B, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0);
ph_dRPA_ApB_sing(nO, nV, nBas, nS, d_eps, d_ERI, d_ApB);
ph_dRPA_AmB_sing(nO, nV, nBas, nS, d_eps, d_ERI, d_AmB);
check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on A & B kernels = %f msec\n", elapsedTime);
// free memory
check_Cuda_Errors(cudaFree(d_eps), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_ERI), "cudaFree", __FILE__, __LINE__);
// TODO
// diagonalize A+B and A-B
int *d_info = NULL;
double *d_Omega = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_info, sizeof(int)),
"cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_Omega, nS * sizeof(double)),
"cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0);
diag_dn_dsyevd(nS, d_info, d_Omega, d_A);
check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on diagonalization = %f msec\n", elapsedTime);
// transfer data to CPU
cudaEventRecord(start, 0);
//int info_gpu = 0;
//check_Cuda_Errors(cudaMemcpy(&info_gpu, d_info, sizeof(int), cudaMemcpyDeviceToHost),
// "cudaMemcpy", __FILE__, __LINE__);
//if (info_gpu != 0) {
// printf("Error: diag_dn_dsyevd returned error code %d\n", info_gpu);
// exit(EXIT_FAILURE);
//}
check_Cuda_Errors(cudaMemcpy(h_XpY, d_, nS2 * sizeof(double), cudaMemcpyDeviceToHost),
"cudaMemcpy", __FILE__, __LINE__);
check_Cuda_Errors(cudaMemcpy(h_XmY, d_, nS2 * sizeof(double), cudaMemcpyDeviceToHost),
"cudaMemcpy", __FILE__, __LINE__);
check_Cuda_Errors(cudaMemcpy(h_Omega, d_Omega, nS * sizeof(double), cudaMemcpyDeviceToHost),
"cudaMemcpy", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on GPU -> CPU transfer = %f msec\n", elapsedTime);
check_Cuda_Errors(cudaFree(d_info), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_A), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_B), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_Omega), "cudaFree", __FILE__, __LINE__);
}

View File

@ -9,6 +9,11 @@
#include "utils.h" #include "utils.h"
#include "ph_rpa.h" #include "ph_rpa.h"
/*
*
* Y = 0 ==> X+Y = X-Y = X
*
*/
void ph_drpa_tda_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI, void ph_drpa_tda_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
double *h_Omega, double *h_X) { double *h_Omega, double *h_X) {
@ -17,6 +22,9 @@ void ph_drpa_tda_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
int nV = nBas - nO; int nV = nBas - nO;
long long nS_long = (long long) nS;
long long nS2 = nS_long * nS_long;
long long nBas_long = (long long) nBas; long long nBas_long = (long long) nBas;
long long nBas4 = nBas_long * nBas_long * nBas_long * nBas_long; long long nBas4 = nBas_long * nBas_long * nBas_long * nBas_long;
@ -47,7 +55,7 @@ void ph_drpa_tda_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
// construct A // construct A
double *d_A = NULL; double *d_A = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_A, nS * nS * sizeof(double)), "cudaMalloc", __FILE__, __LINE__); check_Cuda_Errors(cudaMalloc((void**)&d_A, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0); cudaEventRecord(start, 0);
ph_dRPA_A_sing(nO, nV, nBas, nS, d_eps, d_ERI, d_A); ph_dRPA_A_sing(nO, nV, nBas, nS, d_eps, d_ERI, d_A);
@ -86,7 +94,7 @@ void ph_drpa_tda_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
// printf("Error: diag_dn_dsyevd returned error code %d\n", info_gpu); // printf("Error: diag_dn_dsyevd returned error code %d\n", info_gpu);
// exit(EXIT_FAILURE); // exit(EXIT_FAILURE);
//} //}
check_Cuda_Errors(cudaMemcpy(h_X, d_A, nS * nS * sizeof(double), cudaMemcpyDeviceToHost), check_Cuda_Errors(cudaMemcpy(h_X, d_A, nS2 * sizeof(double), cudaMemcpyDeviceToHost),
"cudaMemcpy", __FILE__, __LINE__); "cudaMemcpy", __FILE__, __LINE__);
check_Cuda_Errors(cudaMemcpy(h_Omega, d_Omega, nS * sizeof(double), cudaMemcpyDeviceToHost), check_Cuda_Errors(cudaMemcpy(h_Omega, d_Omega, nS * sizeof(double), cudaMemcpyDeviceToHost),
"cudaMemcpy", __FILE__, __LINE__); "cudaMemcpy", __FILE__, __LINE__);