mirror of
https://github.com/pfloos/quack
synced 2025-01-03 10:05:59 +01:00
Three-state extension and MOM
This commit is contained in:
parent
54a938a909
commit
2ce6b12854
@ -2,4 +2,4 @@
|
||||
2 1 1 0 0
|
||||
# Znuc x y z
|
||||
H 0. 0. 0.
|
||||
H 0. 0. 2.5
|
||||
H 0. 0. 1.4
|
||||
|
78
input/basis
78
input/basis
@ -1,66 +1,18 @@
|
||||
1 21
|
||||
S 10
|
||||
1 54620.0000000 0.0000180
|
||||
2 8180.0000000 0.0001380
|
||||
3 1862.0000000 0.0007230
|
||||
4 527.3000000 0.0030390
|
||||
5 172.0000000 0.0109080
|
||||
6 62.1000000 0.0340350
|
||||
7 24.2100000 0.0911930
|
||||
8 9.9930000 0.1992680
|
||||
9 4.3050000 0.3293550
|
||||
10 1.9210000 0.3404890
|
||||
S 10
|
||||
1 54620.0000000 -0.0000030
|
||||
2 8180.0000000 -0.0000250
|
||||
3 1862.0000000 -0.0001310
|
||||
4 527.3000000 -0.0005580
|
||||
5 172.0000000 -0.0019880
|
||||
6 62.1000000 -0.0063700
|
||||
7 24.2100000 -0.0172170
|
||||
8 9.9930000 -0.0408580
|
||||
9 4.3050000 -0.0742370
|
||||
10 1.9210000 -0.1192340
|
||||
1 3
|
||||
S 3
|
||||
1 13.0100000 0.0196850
|
||||
2 1.9620000 0.1379770
|
||||
3 0.4446000 0.4781480
|
||||
S 1
|
||||
1 0.8663000 1.0000000
|
||||
1 0.1220000 1.0000000
|
||||
P 1
|
||||
1 0.7270000 1.0000000
|
||||
2 3
|
||||
S 3
|
||||
1 13.0100000 0.0196850
|
||||
2 1.9620000 0.1379770
|
||||
3 0.4446000 0.4781480
|
||||
S 1
|
||||
1 0.2475000 1.0000000
|
||||
S 1
|
||||
1 0.1009000 1.0000000
|
||||
S 1
|
||||
1 0.0412900 1.0000000
|
||||
P 4
|
||||
1 43.7500000 0.0006330
|
||||
2 10.3300000 0.0048080
|
||||
3 3.2260000 0.0205270
|
||||
4 1.1270000 0.0678160
|
||||
1 0.1220000 1.0000000
|
||||
P 1
|
||||
1 0.4334000 1.0000000
|
||||
P 1
|
||||
1 0.1808000 1.0000000
|
||||
P 1
|
||||
1 0.0782700 1.0000000
|
||||
P 1
|
||||
1 0.0337200 1.0000000
|
||||
D 1
|
||||
1 1.6350000 1.0000000
|
||||
D 1
|
||||
1 0.7410000 1.0000000
|
||||
D 1
|
||||
1 0.3350000 1.0000000
|
||||
D 1
|
||||
1 0.1519000 1.0000000
|
||||
F 1
|
||||
1 0.6860000 1.0000000
|
||||
F 1
|
||||
1 0.4010000 1.0000000
|
||||
F 1
|
||||
1 0.2350000 1.0000000
|
||||
G 1
|
||||
1 0.6030000 1.0000000
|
||||
G 1
|
||||
1 0.3240000 1.0000000
|
||||
H 1
|
||||
1 0.5100000 1.0000000
|
||||
|
||||
|
||||
1 0.7270000 1.0000000
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Restricted or unrestricted KS calculation
|
||||
GOK-RKS
|
||||
MOM-RKS
|
||||
# exchange rung:
|
||||
# Hartree = 0
|
||||
# LDA = 1: RS51,RMFL20
|
||||
@ -13,12 +13,12 @@
|
||||
# GGA = 2:
|
||||
# Hybrid = 4:
|
||||
# Hartree-Fock = 666
|
||||
1 RMFL20
|
||||
1 RVWN5
|
||||
# quadrature grid SG-n
|
||||
1
|
||||
# Number of states in ensemble (nEns)
|
||||
2
|
||||
3
|
||||
# Ensemble weights: wEns(1),...,wEns(nEns-1)
|
||||
0.0
|
||||
0.0000000 0.0000000
|
||||
# GOK-DFT: maxSCF thresh DIIS n_diis guess_type ortho_type
|
||||
32 0.00001 T 5 1 1
|
||||
|
@ -1,4 +1,5 @@
|
||||
# nAt nEla nElb nCore nRyd
|
||||
1 2 2 0 0
|
||||
2 1 1 0 0
|
||||
# Znuc x y z
|
||||
Be 0.0 0.0 0.0
|
||||
H 0. 0. 0.
|
||||
H 0. 0. 1.4
|
||||
|
@ -1,3 +1,4 @@
|
||||
1
|
||||
2
|
||||
|
||||
Be 0.0000000000 0.0000000000 0.0000000000
|
||||
H 0.0000000000 0.0000000000 0.0000000000
|
||||
H 0.0000000000 0.0000000000 0.7408481486
|
||||
|
78
input/weight
78
input/weight
@ -1,66 +1,18 @@
|
||||
1 21
|
||||
S 10
|
||||
1 54620.0000000 0.0000180
|
||||
2 8180.0000000 0.0001380
|
||||
3 1862.0000000 0.0007230
|
||||
4 527.3000000 0.0030390
|
||||
5 172.0000000 0.0109080
|
||||
6 62.1000000 0.0340350
|
||||
7 24.2100000 0.0911930
|
||||
8 9.9930000 0.1992680
|
||||
9 4.3050000 0.3293550
|
||||
10 1.9210000 0.3404890
|
||||
S 10
|
||||
1 54620.0000000 -0.0000030
|
||||
2 8180.0000000 -0.0000250
|
||||
3 1862.0000000 -0.0001310
|
||||
4 527.3000000 -0.0005580
|
||||
5 172.0000000 -0.0019880
|
||||
6 62.1000000 -0.0063700
|
||||
7 24.2100000 -0.0172170
|
||||
8 9.9930000 -0.0408580
|
||||
9 4.3050000 -0.0742370
|
||||
10 1.9210000 -0.1192340
|
||||
1 3
|
||||
S 3
|
||||
1 13.0100000 0.0196850
|
||||
2 1.9620000 0.1379770
|
||||
3 0.4446000 0.4781480
|
||||
S 1
|
||||
1 0.8663000 1.0000000
|
||||
1 0.1220000 1.0000000
|
||||
P 1
|
||||
1 0.7270000 1.0000000
|
||||
2 3
|
||||
S 3
|
||||
1 13.0100000 0.0196850
|
||||
2 1.9620000 0.1379770
|
||||
3 0.4446000 0.4781480
|
||||
S 1
|
||||
1 0.2475000 1.0000000
|
||||
S 1
|
||||
1 0.1009000 1.0000000
|
||||
S 1
|
||||
1 0.0412900 1.0000000
|
||||
P 4
|
||||
1 43.7500000 0.0006330
|
||||
2 10.3300000 0.0048080
|
||||
3 3.2260000 0.0205270
|
||||
4 1.1270000 0.0678160
|
||||
1 0.1220000 1.0000000
|
||||
P 1
|
||||
1 0.4334000 1.0000000
|
||||
P 1
|
||||
1 0.1808000 1.0000000
|
||||
P 1
|
||||
1 0.0782700 1.0000000
|
||||
P 1
|
||||
1 0.0337200 1.0000000
|
||||
D 1
|
||||
1 1.6350000 1.0000000
|
||||
D 1
|
||||
1 0.7410000 1.0000000
|
||||
D 1
|
||||
1 0.3350000 1.0000000
|
||||
D 1
|
||||
1 0.1519000 1.0000000
|
||||
F 1
|
||||
1 0.6860000 1.0000000
|
||||
F 1
|
||||
1 0.4010000 1.0000000
|
||||
F 1
|
||||
1 0.2350000 1.0000000
|
||||
G 1
|
||||
1 0.6030000 1.0000000
|
||||
G 1
|
||||
1 0.3240000 1.0000000
|
||||
H 1
|
||||
1 0.5100000 1.0000000
|
||||
|
||||
|
||||
1 0.7270000 1.0000000
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine LIM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight, &
|
||||
subroutine LIM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,nGrid,weight, &
|
||||
maxSCF,thresh,max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,c)
|
||||
|
||||
! Perform restricted Kohn-Sham calculation for ensembles
|
||||
@ -12,7 +12,6 @@ subroutine LIM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight
|
||||
character(len=12),intent(in) :: x_DFA,c_DFA
|
||||
logical,intent(in) :: LDA_centered
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: maxSCF,max_diis,guess_type
|
||||
@ -35,8 +34,7 @@ subroutine LIM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight
|
||||
! Local variables
|
||||
|
||||
integer :: iEns
|
||||
double precision :: EwZW
|
||||
double precision :: EwEW
|
||||
double precision :: Ew(nEnS)
|
||||
double precision :: wLIM(nEns)
|
||||
double precision :: Om(nEns)
|
||||
|
||||
@ -49,6 +47,11 @@ subroutine LIM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight
|
||||
write(*,*)'************************************************'
|
||||
write(*,*)
|
||||
|
||||
! Initializatio
|
||||
|
||||
Ew(:) = 0d0
|
||||
Om(:) = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Zero-weight calculation
|
||||
!------------------------------------------------------------------------
|
||||
@ -58,7 +61,8 @@ subroutine LIM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight
|
||||
write(*,'(A40)') '*************************************************'
|
||||
|
||||
wLIM(1) = 1d0
|
||||
wLIM(2:nEns) = 0d0
|
||||
wLIM(2) = 0d0
|
||||
wLIM(3) = 0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
write(*,'(A20,I2,A2,F16.10)') ' Weight of state ',iEns,': ',wLIM(iEns)
|
||||
@ -67,43 +71,71 @@ subroutine LIM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight
|
||||
write(*,*)
|
||||
|
||||
call GOK_RKS(.false.,x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wLIM,nGrid,weight,maxSCF,thresh, &
|
||||
max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,EwZW,c)
|
||||
max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew(1),c)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Equiensemble calculation
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,'(A40)') '*************************************************'
|
||||
write(*,'(A40)') ' NON-ZERO-WEIGHT CALCULATION '
|
||||
write(*,'(A40)') ' TWO-STATE EQUI-WEIGHT CALCULATION '
|
||||
write(*,'(A40)') '*************************************************'
|
||||
|
||||
wLIM(1) = 0.5d0
|
||||
wLIM(2) = 0.5d0
|
||||
wLIM(3) = 0.0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
write(*,'(A20,I2,A2,F16.10)') ' Weight of state ',iEns,': ',wEns(iEns)
|
||||
write(*,'(A20,I2,A2,F16.10)') ' Weight of state ',iEns,': ',wLIM(iEns)
|
||||
end do
|
||||
write(*,'(A40)') '*************************************************'
|
||||
write(*,*)
|
||||
|
||||
call GOK_RKS(.true.,x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight,maxSCF,thresh, &
|
||||
max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,EwEW,c)
|
||||
call GOK_RKS(.true.,x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wLIM,nGrid,weight,maxSCF,thresh, &
|
||||
max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew(2),c)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Equiensemble calculation
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,'(A40)') '*************************************************'
|
||||
write(*,'(A40)') ' THREE-STATE EQUI-WEIGHT CALCULATION '
|
||||
write(*,'(A40)') '*************************************************'
|
||||
|
||||
wLIM(1) = 1d0/3d0
|
||||
wLIM(2) = 1d0/3d0
|
||||
wLIM(3) = 1d0/3d0
|
||||
|
||||
do iEns=1,nEns
|
||||
write(*,'(A20,I2,A2,F16.10)') ' Weight of state ',iEns,': ',wLIM(iEns)
|
||||
end do
|
||||
write(*,'(A40)') '*************************************************'
|
||||
write(*,*)
|
||||
|
||||
call GOK_RKS(.true.,x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wLIM,nGrid,weight,maxSCF,thresh, &
|
||||
max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew(3),c)
|
||||
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! LIM excitation energies
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
Om(:) = 0d0
|
||||
if(wEns(2) > 10d-3) then
|
||||
Om(2) = (EwEW - EwZW)/wEns(2)
|
||||
end if
|
||||
Om(2) = (Ew(2) - Ew(1))/2d0
|
||||
Om(3) = (Ew(3) - Ew(1))/3d0 + 0.5d0*Om(2)
|
||||
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' LINEAR INTERPOLATION METHOD EXCITATION ENERGIES '
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
|
||||
write(*,'(A44,F16.10,A3)') ' Zero-weight ensemble energy',EwZW, ' au'
|
||||
write(*,'(A44,F16.10,A3)') ' Equi-weight ensemble energy',EwEW, ' au'
|
||||
write(*,'(A44,F16.10,A3)') ' Ensemble energy #1 ',Ew(1),' au'
|
||||
write(*,'(A44,F16.10,A3)') ' Ensemble energy #2 ',Ew(2),' au'
|
||||
write(*,'(A44,F16.10,A3)') ' Ensemble energy #3 ',Ew(3),' au'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
do iEns=2,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Excitation energy 1 ->',iEns,': ',Om(iEns), ' au'
|
||||
end do
|
||||
write(*,*)
|
||||
do iEns=2,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Excitation energy 1 ->',iEns,': ',Om(iEns)*HaToeV,' eV'
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
|
142
src/eDFT/MOM_RKS.f90
Normal file
142
src/eDFT/MOM_RKS.f90
Normal file
@ -0,0 +1,142 @@
|
||||
subroutine MOM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,nGrid,weight, &
|
||||
maxSCF,thresh,max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,c)
|
||||
|
||||
! Perform restricted Kohn-Sham calculation for ensembles
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: x_rung,c_rung
|
||||
character(len=12),intent(in) :: x_DFA,c_DFA
|
||||
logical,intent(in) :: LDA_centered
|
||||
integer,intent(in) :: nEns
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: maxSCF,max_diis,guess_type
|
||||
double precision,intent(in) :: thresh
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: dAO(ncart,nBas,nGrid)
|
||||
|
||||
integer,intent(in) :: nO,nV
|
||||
double precision,intent(in) :: S(nBas,nBas)
|
||||
double precision,intent(in) :: T(nBas,nBas)
|
||||
double precision,intent(in) :: V(nBas,nBas)
|
||||
double precision,intent(in) :: Hc(nBas,nBas)
|
||||
double precision,intent(in) :: X(nBas,nBas)
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: ENuc
|
||||
|
||||
double precision,intent(out) :: c(nBas,nBas)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iEns
|
||||
double precision :: Ew(nEns)
|
||||
double precision :: wMOM(nEns)
|
||||
double precision :: Om(nEns)
|
||||
|
||||
! Hello world
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'************************************************'
|
||||
write(*,*)'* Maximum Overlao method *'
|
||||
write(*,*)'* for excitation energies *'
|
||||
write(*,*)'************************************************'
|
||||
write(*,*)
|
||||
|
||||
! Initialization
|
||||
|
||||
Ew(:) = 0d0
|
||||
Om(:) = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Zero-weight calculation
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,'(A40)') '*************************************************'
|
||||
write(*,'(A40)') ' STATE-SPECIFIC CALCULATION #1 '
|
||||
write(*,'(A40)') '*************************************************'
|
||||
|
||||
wMOM(1) = 1d0
|
||||
wMOM(2) = 0d0
|
||||
wMOM(3) = 0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
write(*,'(A20,I2,A2,F16.10)') ' Weight of state ',iEns,': ',wMOM(iEns)
|
||||
end do
|
||||
write(*,'(A40)') '*************************************************'
|
||||
write(*,*)
|
||||
|
||||
call GOK_RKS(.false.,x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wMOM,nGrid,weight,maxSCF,thresh, &
|
||||
max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew(1),c)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Equiensemble calculation
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,'(A40)') '*************************************************'
|
||||
write(*,'(A40)') ' STATE-SPECIFIC CALCULATION #2 '
|
||||
write(*,'(A40)') '*************************************************'
|
||||
|
||||
wMOM(1) = 0d0
|
||||
wMOM(2) = 1d0
|
||||
wMOM(3) = 0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
write(*,'(A20,I2,A2,F16.10)') ' Weight of state ',iEns,': ',wMOM(iEns)
|
||||
end do
|
||||
write(*,'(A40)') '*************************************************'
|
||||
write(*,*)
|
||||
|
||||
call GOK_RKS(.true.,x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wMOM,nGrid,weight,maxSCF,thresh, &
|
||||
max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew(2),c)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Equiensemble calculation
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
write(*,'(A40)') '*************************************************'
|
||||
write(*,'(A40)') ' STATE-SPECIFIC CALCULATION #3 '
|
||||
write(*,'(A40)') '*************************************************'
|
||||
|
||||
wMOM(1) = 0d0
|
||||
wMOM(2) = 0d0
|
||||
wMOM(3) = 1.0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
write(*,'(A20,I2,A2,F16.10)') ' Weight of state ',iEns,': ',wMOM(iEns)
|
||||
end do
|
||||
write(*,'(A40)') '*************************************************'
|
||||
write(*,*)
|
||||
|
||||
call GOK_RKS(.true.,x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wMOM,nGrid,weight,maxSCF,thresh, &
|
||||
max_diis,guess_type,nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew(3),c)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! MOM excitation energies
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
Om(:) = Ew(:) - Ew(1)
|
||||
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,'(A60)') ' LINEAR INTERPOLATION METHOD EXCITATION ENERGIES '
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
|
||||
write(*,'(A44,F16.10,A3)') ' Ensemble energy #1 ',Ew(1),' au'
|
||||
write(*,'(A44,F16.10,A3)') ' Ensemble energy #2 ',Ew(2),' au'
|
||||
write(*,'(A44,F16.10,A3)') ' Ensemble energy #3 ',Ew(3),' au'
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
do iEns=2,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Excitation energy 1 ->',iEns,': ',Om(iEns), ' au'
|
||||
end do
|
||||
write(*,*)
|
||||
do iEns=2,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Excitation energy 1 ->',iEns,': ',Om(iEns)*HaToeV,' eV'
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
|
||||
|
||||
end subroutine MOM_RKS
|
@ -37,9 +37,9 @@ subroutine RGIC_lda_exchange_derivative_discontinuity(nEns,wEns,nGrid,weight,rho
|
||||
|
||||
! Parameters for H2 at equilibrium
|
||||
|
||||
! a = + 0.5751782560799208d0
|
||||
! b = - 0.021108186591137282d0
|
||||
! c = - 0.36718902716347124d0
|
||||
a = + 0.5751782560799208d0
|
||||
b = - 0.021108186591137282d0
|
||||
c = - 0.36718902716347124d0
|
||||
|
||||
! Parameters for stretch H2
|
||||
|
||||
@ -55,11 +55,11 @@ subroutine RGIC_lda_exchange_derivative_discontinuity(nEns,wEns,nGrid,weight,rho
|
||||
|
||||
! Parameters for HNO
|
||||
|
||||
a = 0.0061158387543040335d0
|
||||
b = -0.00005968703047293955d0
|
||||
c = -0.00001692245714408755d0
|
||||
! a = 0.0061158387543040335d0
|
||||
! b = -0.00005968703047293955d0
|
||||
! c = -0.00001692245714408755d0
|
||||
|
||||
w = wEns(2)
|
||||
w = 0.5d0*wEns(2) + wEns(3)
|
||||
dCxGICdw = (0.5d0*b + (2d0*a + 0.5d0*c)*(w - 0.5d0) - (1d0 - w)*w*(3d0*b + 4d0*c*(w - 0.5d0)))
|
||||
dCxGICdw = CxLDA*dCxGICdw
|
||||
|
||||
@ -72,7 +72,8 @@ subroutine RGIC_lda_exchange_derivative_discontinuity(nEns,wEns,nGrid,weight,rho
|
||||
if(r > threshold) then
|
||||
|
||||
dExdw(1) = 0d0
|
||||
dExdw(2) = dExdw(2) + weight(iG)*dCxGICdw*r**(4d0/3d0)
|
||||
dExdw(2) = dExdw(2) + 0.5d0*weight(iG)*dCxGICdw*r**(4d0/3d0)
|
||||
dExdw(3) = dExdw(3) + 1.0d0*weight(iG)*dCxGICdw*r**(4d0/3d0)
|
||||
|
||||
end if
|
||||
|
||||
|
@ -29,9 +29,9 @@ subroutine RGIC_lda_exchange_energy(nEns,wEns,nGrid,weight,rho,Ex)
|
||||
|
||||
! Parameters for H2 at equilibrium
|
||||
|
||||
! a = + 0.5751782560799208d0
|
||||
! b = - 0.021108186591137282d0
|
||||
! c = - 0.36718902716347124d0
|
||||
a = + 0.5751782560799208d0
|
||||
b = - 0.021108186591137282d0
|
||||
c = - 0.36718902716347124d0
|
||||
|
||||
! Parameters for stretch H2
|
||||
|
||||
@ -47,11 +47,11 @@ subroutine RGIC_lda_exchange_energy(nEns,wEns,nGrid,weight,rho,Ex)
|
||||
|
||||
! Parameters for HNO
|
||||
|
||||
a = 0.0061158387543040335d0
|
||||
b = -0.00005968703047293955d0
|
||||
c = -0.00001692245714408755d0
|
||||
! a = 0.0061158387543040335d0
|
||||
! b = -0.00005968703047293955d0
|
||||
! c = -0.00001692245714408755d0
|
||||
|
||||
w = wEns(2)
|
||||
w = 0.5d0*wEns(2) + wEns(3)
|
||||
CxGIC = 1d0 - w*(1d0 - w)*(a + b*(w - 0.5d0) + c*(w - 0.5d0)**2)
|
||||
CxGIC = CxLDA*CxGIC
|
||||
|
||||
|
@ -32,9 +32,9 @@ subroutine RGIC_lda_exchange_individual_energy(nEns,wEns,nGrid,weight,rhow,rho,E
|
||||
|
||||
! Parameters for H2 at equilibrium
|
||||
|
||||
! a = + 0.5751782560799208d0
|
||||
! b = - 0.021108186591137282d0
|
||||
! c = - 0.36718902716347124d0
|
||||
a = + 0.5751782560799208d0
|
||||
b = - 0.021108186591137282d0
|
||||
c = - 0.36718902716347124d0
|
||||
|
||||
! Parameters for stretch H2
|
||||
|
||||
@ -51,11 +51,11 @@ subroutine RGIC_lda_exchange_individual_energy(nEns,wEns,nGrid,weight,rhow,rho,E
|
||||
|
||||
! Parameters for HNO
|
||||
|
||||
a = 0.0061158387543040335d0
|
||||
b = -0.00005968703047293955d0
|
||||
c = -0.00001692245714408755d0
|
||||
! a = 0.0061158387543040335d0
|
||||
! b = -0.00005968703047293955d0
|
||||
! c = -0.00001692245714408755d0
|
||||
|
||||
w = wEns(2)
|
||||
w = 0.5d0*wEns(2) + wEns(3)
|
||||
CxGIC = 1d0 - w*(1d0 - w)*(a + b*(w - 0.5d0) + c*(w - 0.5d0)**2)
|
||||
CxGIC = CxLDA*CxGIC
|
||||
|
||||
|
@ -32,9 +32,9 @@ subroutine RGIC_lda_exchange_potential(nEns,wEns,nGrid,weight,nBas,AO,rho,Fx)
|
||||
|
||||
! Parameters for H2 at equilibrium
|
||||
|
||||
! a = + 0.5751782560799208d0
|
||||
! b = - 0.021108186591137282d0
|
||||
! c = - 0.36718902716347124d0
|
||||
a = + 0.5751782560799208d0
|
||||
b = - 0.021108186591137282d0
|
||||
c = - 0.36718902716347124d0
|
||||
|
||||
! Parameters for stretch H2
|
||||
|
||||
@ -51,11 +51,11 @@ subroutine RGIC_lda_exchange_potential(nEns,wEns,nGrid,weight,nBas,AO,rho,Fx)
|
||||
|
||||
! Parameters for HNO
|
||||
|
||||
a = 0.0061158387543040335d0
|
||||
b = -0.00005968703047293955d0
|
||||
c = -0.00001692245714408755d0
|
||||
! a = 0.0061158387543040335d0
|
||||
! b = -0.00005968703047293955d0
|
||||
! c = -0.00001692245714408755d0
|
||||
|
||||
w = wEns(2)
|
||||
w = 0.5d0*wEns(2) + wEns(3)
|
||||
CxGIC = 1d0 - w*(1d0 - w)*(a + b*(w - 0.5d0) + c*(w - 0.5d0)**2)
|
||||
CxGIC = CxLDA*CxGIC
|
||||
|
||||
|
@ -34,9 +34,13 @@ subroutine RMFL20_lda_correlation_derivative_discontinuity(nEns,wEns,nGrid,weigh
|
||||
aMFL(2,1) = +0.00540994d0
|
||||
aMFL(3,1) = +0.0830766d0
|
||||
|
||||
aMFL(1,2) = -0.0144633d0
|
||||
aMFL(2,2) = -0.0506019d0
|
||||
aMFL(3,2) = +0.0331417d0
|
||||
aMFL(1,2) = -0.0282814d0
|
||||
aMFL(2,2) = +0.00273925d0
|
||||
aMFL(3,2) = +0.0664914d0
|
||||
|
||||
aMFL(1,3) = -0.0144633d0
|
||||
aMFL(2,3) = -0.0506019d0
|
||||
aMFL(3,3) = +0.0331417d0
|
||||
|
||||
! Compute correlation energy for ground, singly-excited and doubly-excited states
|
||||
|
||||
|
@ -36,9 +36,13 @@ subroutine RMFL20_lda_correlation_energy(LDA_centered,nEns,wEns,nGrid,weight,rho
|
||||
aMFL(2,1) = +0.00540994d0
|
||||
aMFL(3,1) = +0.0830766d0
|
||||
|
||||
aMFL(1,2) = -0.0144633d0
|
||||
aMFL(2,2) = -0.0506019d0
|
||||
aMFL(3,2) = +0.0331417d0
|
||||
aMFL(1,2) = -0.0282814d0
|
||||
aMFL(2,2) = +0.00273925d0
|
||||
aMFL(3,2) = +0.0664914d0
|
||||
|
||||
aMFL(1,3) = -0.0144633d0
|
||||
aMFL(2,3) = -0.0506019d0
|
||||
aMFL(3,3) = +0.0331417d0
|
||||
|
||||
! Compute correlation energy for ground and doubly-excited states
|
||||
|
||||
@ -52,6 +56,7 @@ subroutine RMFL20_lda_correlation_energy(LDA_centered,nEns,wEns,nGrid,weight,rho
|
||||
|
||||
call RVWN5_lda_correlation_energy(nGrid,weight(:),rho(:),EcLDA)
|
||||
|
||||
EceLDA(3) = EcLDA + wEns(3)*(EceLDA(3) - EceLDA(1))
|
||||
EceLDA(2) = EcLDA + wEns(2)*(EceLDA(2) - EceLDA(1))
|
||||
EceLDA(1) = EcLDA
|
||||
|
||||
|
@ -36,9 +36,13 @@ subroutine RMFL20_lda_correlation_individual_energy(LDA_centered,nEns,wEns,nGrid
|
||||
aMFL(2,1) = +0.00540994d0
|
||||
aMFL(3,1) = +0.0830766d0
|
||||
|
||||
aMFL(1,2) = -0.0144633d0
|
||||
aMFL(2,2) = -0.0506019d0
|
||||
aMFL(3,2) = +0.0331417d0
|
||||
aMFL(1,2) = -0.0282814d0
|
||||
aMFL(2,2) = +0.00273925d0
|
||||
aMFL(3,2) = +0.0664914d0
|
||||
|
||||
aMFL(1,3) = -0.0144633d0
|
||||
aMFL(2,3) = -0.0506019d0
|
||||
aMFL(3,3) = +0.0331417d0
|
||||
|
||||
! Compute correlation energy for ground- and doubly-excited states
|
||||
|
||||
@ -52,6 +56,7 @@ subroutine RMFL20_lda_correlation_individual_energy(LDA_centered,nEns,wEns,nGrid
|
||||
|
||||
call RVWN5_lda_correlation_individual_energy(nGrid,weight(:),rhow(:),rho(:),EcLDA)
|
||||
|
||||
EceLDA(3) = EcLDA + wEns(3)*(EceLDA(3) - EceLDA(1))
|
||||
EceLDA(2) = EcLDA + wEns(2)*(EceLDA(2) - EceLDA(1))
|
||||
EceLDA(1) = EcLDA
|
||||
|
||||
|
@ -37,9 +37,13 @@ subroutine RMFL20_lda_correlation_potential(LDA_centered,nEns,wEns,nGrid,weight,
|
||||
aMFL(2,1) = +0.00540994d0
|
||||
aMFL(3,1) = +0.0830766d0
|
||||
|
||||
aMFL(1,2) = -0.0144633d0
|
||||
aMFL(2,2) = -0.0506019d0
|
||||
aMFL(3,2) = +0.0331417d0
|
||||
aMFL(1,2) = -0.0282814d0
|
||||
aMFL(2,2) = +0.00273925d0
|
||||
aMFL(3,2) = +0.0664914d0
|
||||
|
||||
aMFL(1,3) = -0.0144633d0
|
||||
aMFL(2,3) = -0.0506019d0
|
||||
aMFL(3,3) = +0.0331417d0
|
||||
|
||||
! Compute correlation energy for ground- and doubly-excited states
|
||||
|
||||
@ -53,6 +57,7 @@ subroutine RMFL20_lda_correlation_potential(LDA_centered,nEns,wEns,nGrid,weight,
|
||||
|
||||
call RVWN5_lda_correlation_potential(nGrid,weight(:),nBas,AO(:,:),rho(:),FcLDA(:,:))
|
||||
|
||||
FceLDA(:,:,3) = FcLDA(:,:) + wEns(3)*(FceLDA(:,:,3) - FceLDA(:,:,1))
|
||||
FceLDA(:,:,2) = FcLDA(:,:) + wEns(2)*(FceLDA(:,:,2) - FceLDA(:,:,1))
|
||||
FceLDA(:,:,1) = FcLDA(:,:)
|
||||
|
||||
|
@ -174,13 +174,13 @@ program eDFT
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute RKS energy
|
||||
! Compute LIM excitation energies
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(method == 'LIM-RKS') then
|
||||
|
||||
call cpu_time(start_KS)
|
||||
call LIM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns(:),nGrid,weight(:), &
|
||||
call LIM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,nGrid,weight(:), &
|
||||
maxSCF,thresh,max_diis,guess_type,nBas,AO(:,:),dAO(:,:,:),nO(1),nV(1), &
|
||||
S(:,:),T(:,:),V(:,:),Hc(:,:),ERI(:,:,:,:),X(:,:),ENuc,c(:,:))
|
||||
call cpu_time(end_KS)
|
||||
@ -191,6 +191,24 @@ program eDFT
|
||||
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute MOM excitation energies
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
if(method == 'MOM-RKS') then
|
||||
|
||||
call cpu_time(start_KS)
|
||||
call MOM_RKS(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,nGrid,weight(:), &
|
||||
maxSCF,thresh,max_diis,guess_type,nBas,AO(:,:),dAO(:,:,:),nO(1),nV(1), &
|
||||
S(:,:),T(:,:),V(:,:),Hc(:,:),ERI(:,:,:,:),X(:,:),ENuc,c(:,:))
|
||||
call cpu_time(end_KS)
|
||||
|
||||
t_KS = end_KS - start_KS
|
||||
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time for MOM-RKS = ',t_KS,' seconds'
|
||||
write(*,*)
|
||||
|
||||
end if
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Compute GOK-UKS energy (BROKEN)
|
||||
!------------------------------------------------------------------------
|
||||
|
@ -147,8 +147,10 @@ subroutine print_restricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,Ea
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iEns),' au'
|
||||
write(*,*)
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
do iEns=2,nEns
|
||||
write(*,'(A40,I2,A2,F16.10,A3)') ' Excitation energy 1 ->',iEns,': ',(Omaux(iEns)+OmxcDD(iEns))*HaToeV,' eV'
|
||||
@ -157,6 +159,7 @@ subroutine print_restricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,Ea
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iEns)*HaToeV,' eV'
|
||||
write(*,*)
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
@ -179,6 +182,7 @@ subroutine print_restricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,Ea
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns), ' au'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iEns),' au'
|
||||
write(*,*)
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
|
||||
@ -192,6 +196,7 @@ subroutine print_restricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,Ea
|
||||
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns)*HaToeV, ' eV'
|
||||
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iEns)*HaToeV,' eV'
|
||||
write(*,*)
|
||||
end do
|
||||
write(*,'(A60)') '-------------------------------------------------'
|
||||
write(*,*)
|
||||
|
@ -27,7 +27,7 @@ subroutine restricted_auxiliary_energy(nBas,nEns,nO,eps,Eaux)
|
||||
|
||||
Eaux(iEns) = 2d0*sum(eps(1:nO))
|
||||
|
||||
! Doubly-excited state density matrix
|
||||
! Singly-excited state density matrix
|
||||
|
||||
iEns = 2
|
||||
|
||||
@ -37,6 +37,18 @@ subroutine restricted_auxiliary_energy(nBas,nEns,nO,eps,Eaux)
|
||||
Eaux(iEns) = 0d0
|
||||
end if
|
||||
|
||||
Eaux(iEns) = Eaux(iEns) + eps(nO) + eps(nO+1)
|
||||
|
||||
! Doubly-excited state density matrix
|
||||
|
||||
iEns = 3
|
||||
|
||||
if(nO > 1) then
|
||||
Eaux(iEns) = 2d0*sum(eps(1:nO-1))
|
||||
else
|
||||
Eaux(iEns) = 0d0
|
||||
end if
|
||||
|
||||
Eaux(iEns) = Eaux(iEns) + 2d0*eps(nO+1)
|
||||
|
||||
end subroutine restricted_auxiliary_energy
|
||||
|
@ -37,6 +37,19 @@ subroutine restricted_density_matrix(nBas,nEns,nO,c,P)
|
||||
P(:,:,iEns) = 0d0
|
||||
end if
|
||||
|
||||
P(:,:,iEns) = P(:,:,iEns) + 1d0*matmul(c(:,nO :nO ),transpose(c(:,nO :nO ))) &
|
||||
+ 1d0*matmul(c(:,nO+1:nO+1),transpose(c(:,nO+1:nO+1)))
|
||||
|
||||
! Doubly-excited state density matrix
|
||||
|
||||
iEns = 3
|
||||
|
||||
if(nO > 1) then
|
||||
P(:,:,iEns) = 2d0*matmul(c(:,1:nO-1),transpose(c(:,1:nO-1)))
|
||||
else
|
||||
P(:,:,iEns) = 0d0
|
||||
end if
|
||||
|
||||
P(:,:,iEns) = P(:,:,iEns) + 2d0*matmul(c(:,nO+1:nO+1),transpose(c(:,nO+1:nO+1)))
|
||||
|
||||
end subroutine restricted_density_matrix
|
||||
|
Loading…
Reference in New Issue
Block a user