4
1
mirror of https://github.com/pfloos/quack synced 2025-01-03 01:56:09 +01:00

Merge pull request #8 from pfloos/master

impose biorthogonality in GT to be able to generate reference values for benchmarking
This commit is contained in:
AbdAmmar 2024-08-30 19:29:20 +02:00 committed by GitHub
commit 2ca8557cb3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 1261 additions and 556 deletions

View File

@ -1,5 +1,5 @@
subroutine RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,dolCCD, &
maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,eHF,cHF)
maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI_AO,ERI_MO,ENuc,ERHF,eHF,cHF)
! Coupled-cluster module
@ -34,7 +34,8 @@ subroutine RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,d
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: cHF(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_MO(nBas,nBas,nBas,nBas)
! Local variables
@ -47,7 +48,7 @@ subroutine RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,d
if(doCCD) then
call wall_time(start_CC)
call CCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
call CCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call wall_time(end_CC)
t_CC = end_CC - start_CC
@ -64,7 +65,7 @@ subroutine RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,d
call wall_time(start_CC)
call DCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR, &
ERI,ENuc,ERHF,eHF)
ERI_MO,ENuc,ERHF,eHF)
call wall_time(end_CC)
t_CC = end_CC - start_CC
@ -82,7 +83,7 @@ subroutine RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,d
if(doCCSD) then
call wall_time(start_CC)
call CCSD(dotest,maxSCF,thresh,max_diis,doCCSDT,nBas,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
call CCSD(dotest,maxSCF,thresh,max_diis,doCCSDT,nBas,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call wall_time(end_CC)
t_CC = end_CC - start_CC
@ -98,7 +99,7 @@ subroutine RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,d
if(dodrCCD) then
call wall_time(start_CC)
call drCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
call drCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call wall_time(end_CC)
t_CC = end_CC - start_CC
@ -114,7 +115,7 @@ subroutine RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,d
if(dorCCD) then
call wall_time(start_CC)
call rCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
call rCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call wall_time(end_CC)
t_CC = end_CC - start_CC
@ -130,7 +131,7 @@ subroutine RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,d
if(docrCCD) then
call wall_time(start_CC)
call crCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
call crCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call wall_time(end_CC)
t_CC = end_CC - start_CC
@ -146,7 +147,7 @@ subroutine RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,d
if(dolCCD) then
call wall_time(start_CC)
call lCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
call lCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
call wall_time(end_CC)
t_CC = end_CC - start_CC
@ -162,7 +163,8 @@ subroutine RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,d
if(dopCCD) then
call wall_time(start_CC)
call pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,eHF,cHF)
call pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI_AO,ENuc,ERHF,eHF,cHF)
call wall_time(end_CC)
t_CC = end_CC - start_CC

View File

@ -1,4 +1,4 @@
subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,eHF,cHF)
subroutine pCCD(dotest,maxIt,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI_AO,ENuc,ERHF,eHF,cHF)
! pair CCD module
@ -8,25 +8,32 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
logical,intent(in) :: dotest
integer,intent(in) :: maxSCF
integer,intent(in) :: maxIt
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
integer,intent(in) :: nBas,nC,nO,nV,nR
double precision,intent(in) :: ENuc,ERHF
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: cHF(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
! Local variables
integer :: p,q,r,s,t,u
integer :: p,q,r,s,t,u,w
integer :: pq,rs
integer :: i,j,a,b
integer :: nSCF
double precision :: Conv
integer :: nItAmp
integer :: nItOrb
double precision :: CvgAmp
double precision :: CvgOrb
double precision :: ECC
double precision :: EcCC
@ -56,11 +63,15 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
double precision :: tr_2rdm
double precision :: E1,E2
double precision,allocatable :: c(:,:)
double precision,allocatable :: h(:,:)
double precision,allocatable :: ERI_MO(:,:,:,:)
double precision,allocatable :: grad(:)
double precision,allocatable :: tmp(:,:,:,:)
double precision,allocatable :: hess(:,:)
double precision,allocatable :: eig(:)
double precision,allocatable :: hessInv(:,:)
double precision,allocatable :: Kap(:,:)
double precision,allocatable :: ExpKap(:,:)
integer :: O,V,N
integer :: n_diis
@ -74,9 +85,9 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
! Hello world
write(*,*)
write(*,*)'**************************************'
write(*,*)'| pair CCD calculation |'
write(*,*)'**************************************'
write(*,*)'*******************************'
write(*,*)'* Restricted pCCD Calculation *'
write(*,*)'*******************************'
write(*,*)
! Useful quantities
@ -85,53 +96,76 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
V = nV - nR
N = O + V
! Form energy denominator
!------------------------------------!
! Star Loop for orbital optimization !
!------------------------------------!
allocate(ERI_MO(N,N,N,N))
allocate(c(N,N),h(N,N))
allocate(eO(O),eV(V),delta_OV(O,V))
allocate(OOOO(O,O),OOVV(O,V),OVOV(O,V),OVVO(O,V),VVVV(V,V))
c(:,:) = cHF(nC+1:nBas-nR,nC+1:nBas-nR)
CvgOrb = 1d0
nItOrb = 0
write(*,*)
write(*,*)'----------------------------------------------------'
write(*,*)'| Orbital Optimization for pCCD |'
write(*,*)'----------------------------------------------------'
do while(CvgOrb > thresh .and. nItOrb < 1)
nItOrb = nItOrb + 1
! Transform integrals
h = matmul(transpose(c),matmul(Hc(nC+1:nBas-nR,nC+1:nBas-nR),c))
call AOtoMO_ERI_RHF(N,c,ERI_AO(nC+1:nBas-nR,nC+1:nBas-nR,nC+1:nBas-nR,nC+1:nBas-nR),ERI_MO)
! Form energy denominator
eO(:) = eHF(nC+1:nO)
eV(:) = eHF(nO+1:nBas-nR)
call form_delta_OV(nC,nO,nV,nR,eO,eV,delta_OV)
do i=1,O
do a=1,V
delta_OV(i,a) = eV(a) - eO(i)
end do
end do
! Create integral batches
allocate(OOOO(O,O),OOVV(O,V),OVOV(O,V),OVVO(O,V),VVVV(V,V))
! Create integral batches
do i=1,O
do j=1,O
OOOO(i,j) = ERI(nC+i,nC+i,nC+j,nC+j)
OOOO(i,j) = ERI_MO(i,i,j,j)
end do
end do
do i=1,O
do a=1,V
OOVV(i,a) = ERI(nC+i,nC+i,nO+a,nO+a)
OVOV(i,a) = ERI(nC+i,nO+a,nC+i,nO+a)
OVVO(i,a) = ERI(nC+i,nO+a,nO+a,nC+i)
OOVV(i,a) = ERI_MO(i,i,O+a,O+a)
OVOV(i,a) = ERI_MO(i,O+a,i,O+a)
OVVO(i,a) = ERI_MO(i,O+a,O+a,i)
end do
end do
do a=1,V
do b=1,V
VVVV(a,b) = ERI(nO+a,nO+a,nO+b,nO+b)
VVVV(a,b) = ERI_MO(O+a,O+a,O+b,O+b)
end do
end do
! Initialization
allocate(t2(O,V),r2(O,V),yO(O,O),yV(V,V))
! Memory allocation for DIIS
!----------------------------!
! Star Loop for t amplitudes !
!----------------------------!
allocate(t2(O,V),r2(O,V),yO(O,O))
allocate(err_diis(O*V,max_diis),t2_diis(O*V,max_diis))
!------------------------------------------------------------------------
! Compute t ampltiudes
!------------------------------------------------------------------------
Conv = 1d0
nSCF = 0
CvgAmp = 1d0
nItAmp = 0
ECC = ERHF
EcCC = 0d0
@ -140,9 +174,6 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
t2_diis(:,:) = 0d0
err_diis(:,:) = 0d0
!------------------------------------------------------------------------
! Main SCF loop
!------------------------------------------------------------------------
write(*,*)
write(*,*)'----------------------------------------------------'
write(*,*)'| pCCD calculation: t amplitudes |'
@ -151,11 +182,11 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
'|','#','|','E(pCCD)','|','Ec(pCCD)','|','Conv','|'
write(*,*)'----------------------------------------------------'
do while(Conv > thresh .and. nSCF < maxSCF)
do while(CvgAmp > thresh .and. nItAmp < maxIt)
! Increment
nSCF = nSCF + 1
nItAmp = nItAmp + 1
! Form intermediate array
@ -163,7 +194,6 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
! Compute residual
r2(:,:) = OOVV(:,:) + 2d0*delta_OV(:,:)*t2(:,:) &
- 2d0*(2d0*OVOV(:,:) - OVVO(:,:) - OOVV(:,:)*t2(:,:))*t2(:,:)
@ -183,7 +213,7 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
! Check convergence
Conv = maxval(abs(r2(:,:)))
CvgAmp = maxval(abs(r2(:,:)))
! Update amplitudes
@ -191,7 +221,12 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
! Compute correlation energy
EcCC = trace_matrix(V,matmul(transpose(OOVV),t2))
EcCC = 0d0
do i=1,O
do a=1,V
EcCC = EcCC + OOVV(i,a)*t2(i,a)
end do
end do
! Dump results
@ -207,53 +242,45 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
end if
write(*,'(1X,A1,1X,I3,1X,A1,1X,F16.10,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
'|',nSCF,'|',ECC+ENuc,'|',EcCC,'|',Conv,'|'
'|',nItAmp,'|',ECC+ENuc,'|',EcCC,'|',CvgAmp,'|'
end do
write(*,*)'----------------------------------------------------'
!------------------------------------------------------------------------
! End of SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
!---------------------------!
! End Loop for t amplitudes !
!---------------------------!
if(nSCF == maxSCF) then
deallocate(r2,yO)
deallocate(err_diis,t2_diis)
! Did it actually converge?
if(nItAmp == maxIt) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed for t ampitudes '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)'! Convergence failed for t ampitudes !'
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
stop
end if
! Deallocate memory
deallocate(err_diis,t2_diis)
! Memory allocation
allocate(z2(O,V))
! Memory allocation for DIIS
!-----------------------------!
! Start Loop for z amplitudes !
!-----------------------------!
allocate(z2(O,V),r2(O,V),yO(O,O),yV(V,V))
allocate(err_diis(O*V,max_diis),z2_diis(O*V,max_diis))
!------------------------------------------------------------------------
! Compute z ampltiudes
!------------------------------------------------------------------------
Conv = 1d0
nSCF = 0
CvgAmp = 1d0
nItAmp = 0
n_diis = 0
z2_diis(:,:) = 0d0
err_diis(:,:) = 0d0
!------------------------------------------------------------------------
! Main SCF loop
!------------------------------------------------------------------------
write(*,*)
write(*,*)'----------------------------------------------------'
write(*,*)'| pCCD calculation: z amplitudes |'
@ -262,11 +289,11 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
'|','#','|','E(pCCD)','|','Ec(pCCD)','|','Conv','|'
write(*,*)'----------------------------------------------------'
do while(Conv > thresh .and. nSCF < maxSCF)
do while(CvgAmp > thresh .and. nItAmp < maxIt)
! Increment
nSCF = nSCF + 1
nItAmp = nItAmp + 1
! Form intermediate array
@ -296,7 +323,7 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
! Check convergence
Conv = maxval(abs(r2(:,:)))
CvgAmp = maxval(abs(r2(:,:)))
! Update amplitudes
@ -312,45 +339,44 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
end if
write(*,'(1X,A1,1X,I3,1X,A1,1X,F16.10,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
'|',nSCF,'|',ECC+ENuc,'|',EcCC,'|',Conv,'|'
'|',nItAmp,'|',ECC+ENuc,'|',EcCC,'|',CvgAmp,'|'
end do
write(*,*)'----------------------------------------------------'
write(*,*)
!------------------------------------------------------------------------
! End of SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
!---------------------------!
! End Loop for z ampltiudes !
!---------------------------!
if(nSCF == maxSCF) then
deallocate(r2,yO,yV)
deallocate(err_diis,z2_diis)
! Did it actually converge?
if(nItAmp == maxIt) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)'! Convergence failed for z ampltiudes !'
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
stop
end if
! Deallocate memory
deallocate(err_diis,z2_diis,r2)
!--------------------------!
! Compute density matrices !
!--------------------------!
!--------------------------!
! Compute density matrices !
!--------------------------!
allocate(rdm1(N,N),rdm2(N,N,N,N))
allocate(xOO(O,O),xVV(V,V),xOV(O,V))
xOO(:,:) = matmul(t2,transpose(z2))
xVV(:,:) = matmul(transpose(z2),t2)
xOV(:,:) = matmul(t2,matmul(transpose(z2),t2))
! Form 1RDM
allocate(rdm1(N,N))
! Form 1RDM
rdm1(:,:) = 0d0
@ -362,7 +388,7 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
rdm1(O+a,O+a) = 2d0*xVV(a,a)
end do
! Check 1RDM
! Check 1RDM
tr_1rdm = trace_matrix(N,rdm1)
write(*,'(A25,F16.10)') ' --> Trace of the 1RDM = ',tr_1rdm
@ -371,12 +397,10 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
write(*,*) ' !!! Your 1RDM seems broken !!! '
write(*,*)
! write(*,*) '1RDM is diagonal at the pCCD level:'
! call matout(N,N,rdm1)
! write(*,*) '1RDM is diagonal at the pCCD level:'
! call matout(N,N,rdm1)
! Form 2RM
allocate(rdm2(N,N,N,N))
! Form 2RM
rdm2(:,:,:,:) = 0d0
@ -472,7 +496,7 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
rdm2(O+a,O+a,O+a,O+a) = 2d0*xVV(a,a)
end do
! Check 2RDM
! Check 2RDM
tr_2rdm = trace_matrix(N**2,rdm2)
write(*,'(A25,F16.10)') ' --> Trace of the 2RDM = ',tr_2rdm
@ -481,13 +505,13 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
write(*,*) ' !!! Your 2RDM seems broken !!! '
write(*,*)
! write(*,*) '2RDM is not diagonal at the pCCD level:'
! call matout(N**2,N**2,rdm2)
! write(*,*) '2RDM is not diagonal at the pCCD level:'
! call matout(N**2,N**2,rdm2)
! Compute electronic energy
deallocate(xOO,xVV,xOV)
deallocate(t2,z2)
allocate(h(N,N))
h = matmul(transpose(cHF),matmul(Hc,cHF))
! Compute electronic energy
E1 = 0d0
E2 = 0d0
@ -497,7 +521,7 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
E1 = E1 + rdm1(p,q)*h(p,q)
do r=1,N
do s=1,N
E2 = E2 + rdm2(p,q,r,s)*ERI(p,q,r,s)
E2 = E2 + rdm2(p,q,r,s)*ERI_MO(p,q,r,s)
end do
end do
end do
@ -511,7 +535,9 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
write(*,'(A25,F16.10)') ' Total energy = ',E1 + E2 + ENuc
write(*,*)
! Compute gradient
!--------------------------!
! Compute orbital gradient !
!--------------------------!
allocate(grad(N**2))
@ -530,7 +556,7 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
do r=1,N
do s=1,N
do t=1,N
grad(pq) = grad(pq) + (ERI(r,s,p,t)*rdm2(r,s,q,t) - ERI(q,t,r,s)*rdm2(p,t,r,s))
grad(pq) = grad(pq) + (ERI_MO(r,s,p,t)*rdm2(r,s,q,t) - ERI_MO(q,t,r,s)*rdm2(p,t,r,s))
end do
end do
end do
@ -540,8 +566,18 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
write(*,*) 'Orbital gradient at the pCCD level:'
call matout(N,N,grad)
write(*,*)
! Compute Hessian
! Check convergence of orbital optimization
CvgOrb = maxval(abs(grad))
write(*,*) ' Iteration',nItOrb,'for pCCD orbital optimization'
write(*,*) ' Convergence of orbital gradient = ',CvgOrb
write(*,*)
!-------------------------!
! Compute orbital Hessian !
!-------------------------!
allocate(hess(N**2,N**2),tmp(N,N,N,N))
@ -550,7 +586,6 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
do p=1,N
do q=1,N
rs = 0
do r=1,N
do s=1,N
@ -565,9 +600,9 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
end do
do u=1,N
do v=1,N
do w=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) + ERI(u,v,p,r)*rdm2(u,v,q,s) + ERI(q,s,u,v)*rdm2(p,r,u,v)
tmp(p,q,r,s) = tmp(p,q,r,s) + ERI_MO(u,w,p,r)*rdm2(u,w,q,s) + ERI_MO(q,s,u,w)*rdm2(p,r,u,w)
end do
end do
@ -576,19 +611,19 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
do u=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) - ( &
ERI(s,t,p,u)*rdm2(r,t,q,u) + ERI(t,s,p,u)*rdm2(t,r,q,u) &
+ ERI(q,u,r,t)*rdm2(p,u,s,t) + ERI(q,u,t,r)*rdm2(p,u,t,s) )
ERI_MO(s,t,p,u)*rdm2(r,t,q,u) + ERI_MO(t,s,p,u)*rdm2(t,r,q,u) &
+ ERI_MO(q,u,r,t)*rdm2(p,u,s,t) + ERI_MO(q,u,t,r)*rdm2(p,u,t,s) )
end do
end do
do t=1,N
do u=1,N
do v=1,N
do w=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) + 0.5d0*( &
Kronecker_delta(q,r)*(ERI(u,v,p,t)*rdm2(u,v,s,t) + ERI(s,t,u,v)*rdm2(p,t,u,v)) &
+ Kronecker_delta(p,s)*(ERI(q,t,u,v)*rdm2(r,t,u,v) + ERI(u,v,r,t)*rdm2(u,v,q,t)) )
Kronecker_delta(q,r)*(ERI_MO(u,w,p,t)*rdm2(u,w,s,t) + ERI_MO(s,t,u,w)*rdm2(p,t,u,w)) &
+ Kronecker_delta(p,s)*(ERI_MO(q,t,u,w)*rdm2(r,t,u,w) + ERI_MO(u,w,r,t)*rdm2(u,w,q,t)) )
end do
end do
@ -600,7 +635,7 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
end do
end do
! Flatten Hessian matrix and add permutations
! Flatten Hessian matrix and add permutations
pq = 0
do p=1,N
@ -614,7 +649,8 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
rs = rs + 1
hess(pq,rs) = tmp(p,q,r,s) - tmp(q,p,r,s) - tmp(p,q,s,r) + tmp(q,p,s,r)
hess(pq,rs) = tmp(p,r,q,s) - tmp(r,p,q,s) - tmp(p,r,s,q) + tmp(r,p,s,q)
!! hess(pq,rs) = tmp(p,q,r,s) - tmp(q,p,r,s) - tmp(p,q,s,r) + tmp(q,p,s,r)
end do
end do
@ -622,15 +658,81 @@ subroutine pCCD(dotest,maxSCF,thresh,max_diis,nBas,nC,nO,nV,nR,Hc,ERI,ENuc,ERHF,
end do
end do
call matout(N**2,N**2,hess)
deallocate(rdm1,rdm2,tmp)
deallocate(tmp)
allocate(hessInv(N**2,N**2))
allocate(eig(N**2))
call inverse_matrix(N**2,hess,hessInv)
call diagonalize_matrix(N**2,hess,eig)
deallocate(hess)
call vecout(N**2,eig)
allocate(Kap(N,N))
Kap(:,:) = 0d0
pq = 0
do p=1,N
do q=1,N
pq = pq + 1
rs = 0
do r=1,N
do s=1,N
rs = rs + 1
Kap(p,q) = Kap(p,q) - hessInv(pq,rs)*grad(rs)
end do
end do
end do
end do
deallocate(hessInv,grad)
write(*,*) 'kappa'
call matout(N,N,Kap)
write(*,*)
allocate(ExpKap(N,N))
call matrix_exponential(N,Kap,ExpKap)
deallocate(Kap)
write(*,*) 'e^kappa'
call matout(N,N,ExpKap)
write(*,*)
write(*,*) 'Old orbitals'
call matout(N,N,c)
write(*,*)
c = matmul(c,ExpKap)
deallocate(ExpKap)
write(*,*) 'Rotated orbitals'
call matout(N,N,c)
write(*,*)
end do
!-----------------------------------!
! End Loop for orbital optimization !
!-----------------------------------!
! Did it actually converge?
if(nItOrb == maxIt) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)'! Convergence failed for orbital optimization !'
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
stop
end if
! Testing zone

View File

@ -1,93 +1,123 @@
subroutine ppLR(TDA,nOO,nVV,Bpp,Cpp,Dpp,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
! Solve the pp-RPA linear eigenvalue problem
! ---
subroutine ppLR(TDA, nOO, nVV, Bpp, Cpp, Dpp, Om1, X1, Y1, Om2, X2, Y2, EcRPA)
!
! Solve the pp-RPA linear eigenvalue problem
!
! right eigen-problem: H R = R w
! left eigen-problem: H.T L = L w
!
! where L.T R = 1
!
!
! (+C +B)
! H = ( ) where C = C.T and D = D.T
! (-B.T -D)
!
! (w1 0) (X1 X2) (+X1 +X2)
! w = ( ), R = ( ) and L = ( )
! (0 w2) (Y1 Y2) (-Y1 -Y2)
!
!
! the normalisation condition reduces to
!
! X1.T X2 - Y1.T Y2 = 0
! X1.T X1 - Y1.T Y1 = 1
! X2.T X2 - Y2.T Y2 = 1
!
implicit none
include 'parameters.h'
! Input variables
logical, intent(in) :: TDA
integer, intent(in) :: nOO, nVV
double precision, intent(in) :: Bpp(nVV,nOO), Cpp(nVV,nVV), Dpp(nOO,nOO)
double precision, intent(out) :: Om1(nVV), X1(nVV,nVV), Y1(nOO,nVV)
double precision, intent(out) :: Om2(nOO), X2(nVV,nOO), Y2(nOO,nOO)
double precision, intent(out) :: EcRPA
logical,intent(in) :: TDA
integer,intent(in) :: nOO
integer,intent(in) :: nVV
double precision,intent(in) :: Bpp(nVV,nOO)
double precision,intent(in) :: Cpp(nVV,nVV)
double precision,intent(in) :: Dpp(nOO,nOO)
logical :: imp_bio, verbose
integer :: i, j, N
double precision :: EcRPA1, EcRPA2
double precision :: thr_d, thr_nd, thr_deg
double precision,allocatable :: M(:,:), Z(:,:), Om(:)
! Local variables
double precision, external :: trace_matrix
double precision :: trace_matrix
double precision :: EcRPA1
double precision :: EcRPA2
double precision,allocatable :: M(:,:)
double precision,allocatable :: Z(:,:)
double precision,allocatable :: Om(:)
! Output variables
double precision,intent(out) :: Om1(nVV)
double precision,intent(out) :: X1(nVV,nVV)
double precision,intent(out) :: Y1(nOO,nVV)
double precision,intent(out) :: Om2(nOO)
double precision,intent(out) :: X2(nVV,nOO)
double precision,intent(out) :: Y2(nOO,nOO)
double precision,intent(out) :: EcRPA
N = nOO + nVV
! Memory allocation
allocate(M(nOO+nVV,nOO+nVV),Z(nOO+nVV,nOO+nVV),Om(nOO+nVV))
!-------------------------------------------------!
! Solve the p-p eigenproblem !
!-------------------------------------------------!
! !
! | C B | | X1 X2 | | w1 0 | | X1 X2 | !
! | | | | = | | | | !
! | -Bt -D | | Y1 Y2 | | 0 w2 | | Y1 Y2 | !
! !
!-------------------------------------------------!
allocate(M(N,N), Z(N,N), Om(N))
if(TDA) then
X1(:,:) = +Cpp(:,:)
Y1(:,:) = 0d0
if(nVV > 0) call diagonalize_matrix(nVV,X1,Om1)
if(nVV > 0) call diagonalize_matrix(nVV, X1, Om1)
X2(:,:) = 0d0
Y2(:,:) = -Dpp(:,:)
if(nOO > 0) call diagonalize_matrix(nOO,Y2,Om2)
if(nOO > 0) call diagonalize_matrix(nOO, Y2, Om2)
else
! Diagonal blocks
M( 1:nVV , 1:nVV) = + Cpp(1:nVV,1:nVV)
M(nVV+1:nVV+nOO,nVV+1:nVV+nOO) = - Dpp(1:nOO,1:nOO)
! Off-diagonal blocks
M( 1:nVV ,nVV+1:nOO+nVV) = - Bpp(1:nVV,1:nOO)
M(nVV+1:nOO+nVV, 1:nVV) = + transpose(Bpp(1:nVV,1:nOO))
! call matout(nOO,nOO,Dpp)
!! Diagonalize the p-p matrix
!if(nOO+nVV > 0) call diagonalize_general_matrix(nOO+nVV, M, Om, Z)
!! Split the various quantities in p-p and h-h parts
!call sort_ppRPA(nOO, nVV, Om, Z, Om1, X1, Y1, Om2, X2, Y2)
! Diagonalize the p-p matrix
if(nOO+nVV > 0) call diagonalize_general_matrix(nOO+nVV,M,Om,Z)
thr_d = 1d-6 ! to determine if diagonal elements of L.T x R are close enouph to 1
thr_nd = 1d-6 ! to determine if non-diagonal elements of L.T x R are close enouph to 1
thr_deg = 1d-8 ! to determine if two eigenvectors are degenerate or not
imp_bio = .True. ! impose bi-orthogonality
verbose = .False.
call diagonalize_nonsym_matrix(N, M, Z, Om, thr_d, thr_nd, thr_deg, imp_bio, verbose)
! Split the various quantities in p-p and h-h parts
do i = 1, nOO
Om2(i) = Om(i)
do j = 1, nVV
X2(j,i) = Z(j,i)
enddo
do j = 1, nOO
Y2(j,i) = Z(nVV+j,i)
enddo
enddo
call sort_ppRPA(nOO,nVV,Om,Z,Om1,X1,Y1,Om2,X2,Y2)
do i = 1, nVV
Om1(i) = Om(nOO+i)
do j = 1, nVV
X1(j,i) = M(j,nOO+i)
enddo
do j = 1, nOO
Y1(j,i) = M(nVV+j,nOO+i)
enddo
enddo
end if
! Compute the RPA correlation energy
! Compute the RPA correlation energy
EcRPA = 0.5d0 * (sum(Om1) - sum(Om2) - trace_matrix(nVV, Cpp) - trace_matrix(nOO, Dpp))
EcRPA1 = +sum(Om1) - trace_matrix(nVV, Cpp)
EcRPA2 = -sum(Om2) - trace_matrix(nOO, Dpp)
EcRPA = 0.5d0*( sum(Om1) - sum(Om2) - trace_matrix(nVV,Cpp) - trace_matrix(nOO,Dpp) )
EcRPA1 = +sum(Om1) - trace_matrix(nVV,Cpp)
EcRPA2 = -sum(Om2) - trace_matrix(nOO,Dpp)
if(abs(EcRPA - EcRPA1) > 1d-6 .or. abs(EcRPA - EcRPA2) > 1d-6) &
if(abs(EcRPA - EcRPA1) > 1d-6 .or. abs(EcRPA - EcRPA2) > 1d-6) then
print*,'!!! Issue in pp-RPA linear reponse calculation RPA1 != RPA2 !!!'
endif
deallocate(M, Z, Om)
end subroutine

View File

@ -228,7 +228,7 @@ subroutine RQuAcK(dotest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,d
call wall_time(start_CC)
call RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,dolCCD, &
maxSCF_CC,thresh_CC,max_diis_CC,nBas,nC,nO,nV,nR,Hc,ERI_MO,ENuc,ERHF,eHF,cHF)
maxSCF_CC,thresh_CC,max_diis_CC,nBas,nC,nO,nV,nR,Hc,ERI_AO,ERI_MO,ENuc,ERHF,eHF,cHF)
call wall_time(end_CC)
t_CC = end_CC - start_CC

View File

@ -89,8 +89,8 @@ FIX_ORDER_OF_LIBS=-Wl,--start-group
if sys.platform in ["linux", "linux2"]:
# compiler = compile_gfortran_linux
# compiler = compile_ifort_linux
compiler = compile_olympe
compiler = compile_ifort_linux
# compiler = compile_olympe
elif sys.platform == "darwin":
compiler = compile_gfortran_mac
else:

571
src/utils/non_sym_diag.f90 Normal file
View File

@ -0,0 +1,571 @@
! ---
subroutine diagonalize_nonsym_matrix(N, A, L, e_re, thr_d, thr_nd, thr_deg, imp_bio, verbose)
! Diagonalize a non-symmetric matrix
!
! Output
! right-eigenvectors are saved in A
! left-eigenvectors are saved in L
! eigenvalues are saved in e = e_re + i e_im
implicit none
integer, intent(in) :: N
logical, intent(in) :: imp_bio, verbose
double precision, intent(in) :: thr_d, thr_nd, thr_deg
double precision, intent(inout) :: A(N,N)
double precision, intent(out) :: e_re(N), L(N,N)
integer :: i, j, ii
integer :: lwork, info
double precision :: accu_d, accu_nd
integer, allocatable :: iorder(:), deg_num(:)
double precision, allocatable :: Atmp(:,:), Ltmp(:,:), work(:), e_im(:)
double precision, allocatable :: S(:,:)
if(verbose) then
print*, ' Starting a non-Hermitian diagonalization ...'
print*, ' Good Luck ;)'
print*, ' imp_bio = ', imp_bio
endif
! ---
! diagonalize
allocate(Atmp(N,N), e_im(N))
Atmp(1:N,1:N) = A(1:N,1:N)
allocate(work(1))
lwork = -1
call dgeev('V', 'V', N, Atmp, N, e_re, e_im, L, N, A, N, work, lwork, info)
if(info .gt. 0) then
print*,'dgeev failed !!', info
stop
endif
lwork = max(int(work(1)), 1)
deallocate(work)
allocate(work(lwork))
call dgeev('V', 'V', N, Atmp, N, e_re, e_im, L, N, A, N, work, lwork, info)
if(info .ne. 0) then
print*,'dgeev failed !!', info
stop
endif
deallocate(Atmp, WORK)
! ---
! check if eigenvalues are real
i = 1
ii = 0
do while(i .le. N)
if(dabs(e_im(i)) .gt. 1.d-12) then
ii = ii + 1
if(verbose) then
print*, ' Warning: complex eigenvalue !'
print*, i, e_re(i), e_im(i)
if(dabs(e_im(i)/e_re(i)) .lt. 1.d-6) then
print*, ' small enouph to be igored'
else
print*, ' IMAGINARY PART IS SIGNIFANT !!!'
endif
endif
endif
i = i + 1
enddo
if(verbose) then
if(ii .eq. 0) print*, ' congratulations :) eigenvalues are real-valued !!'
endif
! ---
! track & sort the real eigenvalues
allocate(Atmp(N,N), Ltmp(N,N), iorder(N))
do i = 1, N
iorder(i) = i
enddo
call quick_sort(e_re, iorder, N)
Atmp(:,:) = A(:,:)
Ltmp(:,:) = L(:,:)
do i = 1, N
do j = 1, N
A(j,i) = Atmp(j,iorder(i))
L(j,i) = Ltmp(j,iorder(i))
enddo
enddo
deallocate(Atmp, Ltmp, iorder)
! ---
! check bi-orthog
allocate(S(N,N))
call check_biorthog(N, N, L, A, accu_d, accu_nd, S, thr_d, thr_nd, .false., verbose)
if((accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(N))/dble(N) .lt. thr_d)) then
if(verbose) then
print *, ' lapack vectors are normalized and bi-orthogonalized'
endif
elseif((accu_nd .lt. thr_nd) .and. (dabs(accu_d - dble(N)) .gt. thr_d)) then
if(verbose) then
print *, ' lapack vectors are not normalized but bi-orthogonalized'
endif
call check_biorthog_binormalize(N, N, L, A, thr_d, thr_nd, .true.)
call check_biorthog(N, N, L, A, accu_d, accu_nd, S, thr_d, thr_nd, .true., verbose)
else
if(verbose) then
print *, ' lapack vectors are not normalized neither bi-orthogonalized'
endif
allocate(deg_num(N))
call reorder_degen_eigvec(N, thr_deg, deg_num, e_re, L, A)
call impose_biorthog_degen_eigvec(N, deg_num, e_re, L, A)
deallocate(deg_num)
call check_biorthog(N, N, L, A, accu_d, accu_nd, S, thr_d, thr_nd, .false., verbose)
if((accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(N))/dble(N) .lt. thr_d)) then
if(verbose) then
print *, ' lapack vectors are now normalized and bi-orthogonalized'
endif
elseif((accu_nd .lt. thr_nd) .and. (dabs(accu_d - dble(N)) .gt. thr_d)) then
if(verbose) then
print *, ' lapack vectors are now not normalized but bi-orthogonalized'
endif
call check_biorthog_binormalize(N, N, L, A, thr_d, thr_nd, .true.)
call check_biorthog(N, N, L, A, accu_d, accu_nd, S, thr_d, thr_nd, .true., verbose)
else
if(verbose) then
print*, ' bi-orthogonalization failed !'
endif
if(imp_bio) then
print*, ' bi-orthogonalization failed !'
deallocate(S)
stop
endif
endif
endif
deallocate(S)
return
end
! ---
subroutine check_biorthog(n, m, Vl, Vr, accu_d, accu_nd, S, thr_d, thr_nd, stop_ifnot, verbose)
implicit none
integer, intent(in) :: n, m
logical, intent(in) :: stop_ifnot, verbose
double precision, intent(in) :: Vl(n,m), Vr(n,m)
double precision, intent(in) :: thr_d, thr_nd
double precision, intent(out) :: accu_d, accu_nd, S(m,m)
integer :: i, j
double precision, allocatable :: SS(:,:)
if(verbose) then
print *, ' check bi-orthogonality'
endif
! ---
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, Vl, size(Vl, 1), Vr, size(Vr, 1) &
, 0.d0, S, size(S, 1) )
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, m
do j = 1, m
if(i==j) then
accu_d = accu_d + dabs(S(i,i))
else
accu_nd = accu_nd + S(j,i) * S(j,i)
endif
enddo
enddo
accu_nd = dsqrt(accu_nd) / dble(m)
if(verbose) then
if((accu_nd .gt. thr_nd) .or. dabs(accu_d-dble(m))/dble(m) .gt. thr_d) then
print *, ' non bi-orthogonal vectors !'
print *, ' accu_nd = ', accu_nd
print *, ' accu_d = ', dabs(accu_d-dble(m))/dble(m)
else
print *, ' vectors are bi-orthogonals'
endif
endif
! ---
if(stop_ifnot .and. ((accu_nd .gt. thr_nd) .or. dabs(accu_d-dble(m))/dble(m) .gt. thr_d)) then
print *, ' non bi-orthogonal vectors !'
print *, ' accu_nd = ', accu_nd
print *, ' accu_d = ', dabs(accu_d-dble(m))/dble(m)
stop
endif
end
! ---
subroutine check_biorthog_binormalize(n, m, Vl, Vr, thr_d, thr_nd, stop_ifnot)
implicit none
integer, intent(in) :: n, m
logical, intent(in) :: stop_ifnot
double precision, intent(in) :: thr_d, thr_nd
double precision, intent(inout) :: Vl(n,m), Vr(n,m)
integer :: i, j
double precision :: accu_d, accu_nd, s_tmp
double precision, allocatable :: S(:,:)
! ---
allocate(S(m,m))
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, Vl, size(Vl, 1), Vr, size(Vr, 1) &
, 0.d0, S, size(S, 1) )
do i = 1, m
if(S(i,i) .lt. 0.d0) then
do j = 1, n
Vl(j,i) = -1.d0 * Vl(j,i)
enddo
S(i,i) = -S(i,i)
endif
enddo
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, m
do j = 1, m
if(i==j) then
accu_d = accu_d + S(i,i)
else
accu_nd = accu_nd + S(j,i) * S(j,i)
endif
enddo
enddo
accu_nd = dsqrt(accu_nd) / dble(m)
! ---
if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(m))/dble(m) .gt. thr_d) ) then
do i = 1, m
if(S(i,i) <= 0.d0) then
print *, ' overap negative'
print *, i, S(i,i)
exit
endif
if(dabs(S(i,i) - 1.d0) .gt. thr_d) then
s_tmp = 1.d0 / dsqrt(S(i,i))
do j = 1, n
Vl(j,i) = Vl(j,i) * s_tmp
Vr(j,i) = Vr(j,i) * s_tmp
enddo
endif
enddo
endif
! ---
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, Vl, size(Vl, 1), Vr, size(Vr, 1) &
, 0.d0, S, size(S, 1) )
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, m
do j = 1, m
if(i==j) then
accu_d = accu_d + S(i,i)
else
accu_nd = accu_nd + S(j,i) * S(j,i)
endif
enddo
enddo
accu_nd = dsqrt(accu_nd) / dble(m)
deallocate(S)
! ---
if( stop_ifnot .and. ((accu_nd .gt. thr_nd) .or. (dabs(accu_d-dble(m))/dble(m) .gt. thr_d)) ) then
print *, accu_nd, thr_nd
print *, dabs(accu_d-dble(m))/dble(m), thr_d
print *, ' biorthog_binormalize failed !'
stop
endif
end
! ---
subroutine reorder_degen_eigvec(n, thr_deg, deg_num, e0, L0, R0)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: thr_deg
double precision, intent(inout) :: e0(n), L0(n,n), R0(n,n)
integer, intent(out) :: deg_num(n)
logical :: complex_root
integer :: i, j, k, m, ii, j_tmp
double precision :: ei, ej, de
double precision :: accu_d, accu_nd
double precision :: e0_tmp, L0_tmp(n), R0_tmp(n)
double precision, allocatable :: L(:,:), R(:,:), S(:,:), S_inv_half(:,:)
do i = 1, n
deg_num(i) = 1
enddo
do i = 1, n-1
ei = e0(i)
! already considered in degen vectors
if(deg_num(i) .eq. 0) cycle
ii = 0
do j = i+1, n
ej = e0(j)
de = dabs(ei - ej)
if(de .lt. thr_deg) then
ii = ii + 1
j_tmp = i + ii
deg_num(j_tmp) = 0
e0_tmp = e0(j_tmp)
e0(j_tmp) = e0(j)
e0(j) = e0_tmp
L0_tmp(1:n) = L0(1:n,j_tmp)
L0(1:n,j_tmp) = L0(1:n,j)
L0(1:n,j) = L0_tmp(1:n)
R0_tmp(1:n) = R0(1:n,j_tmp)
R0(1:n,j_tmp) = R0(1:n,j)
R0(1:n,j) = R0_tmp(1:n)
endif
enddo
deg_num(i) = ii + 1
enddo
ii = 0
do i = 1, n
if(deg_num(i) .gt. 1) then
ii = ii + 1
endif
enddo
if(ii .eq. 0) then
print*, ' WARNING: bi-orthogonality is lost but there is no degeneracies'
print*, ' rotations may change energy'
stop
endif
end
! ---
subroutine impose_biorthog_degen_eigvec(n, deg_num, e0, L0, R0)
implicit none
integer, intent(in) :: n, deg_num(n)
double precision, intent(in) :: e0(n)
double precision, intent(inout) :: L0(n,n), R0(n,n)
logical :: complex_root
integer :: i, j, k, m
double precision :: ei, ej, de
double precision :: accu_d, accu_nd
double precision, allocatable :: L(:,:), R(:,:), S(:,:), S_inv_half(:,:)
!do i = 1, n
! if(deg_num(i) .gt. 1) then
! print *, ' degen on', i, deg_num(i), e0(i)
! endif
!enddo
! ---
do i = 1, n
m = deg_num(i)
if(m .gt. 1) then
allocate(L(n,m), R(n,m), S(m,m))
do j = 1, m
L(1:n,j) = L0(1:n,i+j-1)
R(1:n,j) = R0(1:n,i+j-1)
enddo
! ---
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, L, size(L, 1), R, size(R, 1) &
, 0.d0, S, size(S, 1) )
accu_nd = 0.d0
do j = 1, m
do k = 1, m
if(j==k) cycle
accu_nd = accu_nd + dabs(S(j,k))
enddo
enddo
if(accu_nd .lt. 1d-12) then
deallocate(S, L, R)
cycle
endif
call impose_biorthog_svd(n, m, L, R)
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, L, size(L, 1), R, size(R, 1) &
, 0.d0, S, size(S, 1) )
accu_nd = 0.d0
do j = 1, m
do k = 1, m
if(j==k) cycle
accu_nd = accu_nd + dabs(S(j,k))
enddo
enddo
if(accu_nd .gt. 1d-12) then
print*, ' accu_nd =', accu_nd
print*, ' your strategy for degenerates orbitals failed !'
print*, m, 'deg on', i
stop
endif
deallocate(S)
! ---
do j = 1, m
L0(1:n,i+j-1) = L(1:n,j)
R0(1:n,i+j-1) = R(1:n,j)
enddo
deallocate(L, R)
endif
enddo
end
! ---
subroutine impose_biorthog_svd(n, m, L, R)
implicit none
integer, intent(in) :: n, m
double precision, intent(inout) :: L(n,m), R(n,m)
integer :: i, j, num_linear_dependencies
double precision :: threshold
double precision, allocatable :: S(:,:), tmp(:,:)
double precision, allocatable :: U(:,:), V(:,:), Vt(:,:), D(:)
allocate(S(m,m))
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, L, size(L, 1), R, size(R, 1) &
, 0.d0, S, size(S, 1) )
! ---
allocate(U(m,m), Vt(m,m), D(m))
call svd(S, m, U, m, D, Vt, m, m, m)
deallocate(S)
threshold = 1.d-6
num_linear_dependencies = 0
do i = 1, m
if(abs(D(i)) <= threshold) then
D(i) = 0.d0
num_linear_dependencies = num_linear_dependencies + 1
else
D(i) = 1.d0 / dsqrt(D(i))
endif
enddo
if(num_linear_dependencies > 0) then
write(*,*) ' linear dependencies = ', num_linear_dependencies
write(*,*) ' m = ', m
stop
endif
allocate(V(m,m))
do i = 1, m
do j = 1, m
V(j,i) = Vt(i,j)
enddo
enddo
deallocate(Vt)
! ---
! R <-- R x V x D^{-0.5}
! L <-- L x U x D^{-0.5}
do i = 1, m
do j = 1, m
V(j,i) = V(j,i) * D(i)
U(j,i) = U(j,i) * D(i)
enddo
enddo
allocate(tmp(n,m))
tmp(:,:) = R(:,:)
call dgemm( 'N', 'N', n, m, m, 1.d0 &
, tmp, size(tmp, 1), V, size(V, 1) &
, 0.d0, R, size(R, 1))
tmp(:,:) = L(:,:)
call dgemm( 'N', 'N', n, m, m, 1.d0 &
, tmp, size(tmp, 1), U, size(U, 1) &
, 0.d0, L, size(L, 1))
deallocate(tmp, U, V, D)
end
! ---