mirror of
https://github.com/pfloos/quack
synced 2025-01-03 18:16:18 +01:00
graph sol for UGW
This commit is contained in:
parent
ce10bbaf56
commit
2b1b2096c4
@ -9,11 +9,11 @@
|
||||
# CIS CID CISD
|
||||
F F F
|
||||
# RPA RPAx ppRPA
|
||||
T F F
|
||||
F F F
|
||||
# G0F2 evGF2 G0F3 evGF3
|
||||
F F F F
|
||||
# G0W0 evGW qsGW
|
||||
F F F
|
||||
T F F
|
||||
# G0T0 evGT qsGT
|
||||
F F F
|
||||
# MCMP2
|
||||
|
@ -5,11 +5,11 @@
|
||||
# CC: maxSCF thresh DIIS n_diis
|
||||
64 0.0000001 T 5
|
||||
# spin: singlet triplet spin_conserved spin_flip TDA
|
||||
T T T T F
|
||||
T T T F F
|
||||
# GF: maxSCF thresh DIIS n_diis lin eta renorm
|
||||
256 0.00001 T 5 T 0.0 3
|
||||
# GW/GT: maxSCF thresh DIIS n_diis lin eta COHSEX SOSEX TDA_W G0W GW0
|
||||
256 0.00001 T 5 T 0.001 F F F F F
|
||||
256 0.00001 T 5 F 0.0 F F F F F
|
||||
# ACFDT: AC Kx XBS
|
||||
F F T
|
||||
# BSE: BSE dBSE dTDA evDyn
|
||||
|
@ -1,4 +1,4 @@
|
||||
double precision function SigmaC(x,w,eta,nBas,nC,nO,nV,nR,nS,e,Omega,rho)
|
||||
double precision function SigmaC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Omega,rho)
|
||||
|
||||
! Compute diagonal of the correlation part of the self-energy
|
||||
|
||||
@ -7,7 +7,7 @@ double precision function SigmaC(x,w,eta,nBas,nC,nO,nV,nR,nS,e,Omega,rho)
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: x
|
||||
integer,intent(in) :: p
|
||||
double precision,intent(in) :: w
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas
|
||||
@ -22,7 +22,7 @@ double precision function SigmaC(x,w,eta,nBas,nC,nO,nV,nR,nS,e,Omega,rho)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,j,a,b,p,jb
|
||||
integer :: i,a,jb
|
||||
double precision :: eps
|
||||
|
||||
! Initialize
|
||||
@ -32,26 +32,18 @@ double precision function SigmaC(x,w,eta,nBas,nC,nO,nV,nR,nS,e,Omega,rho)
|
||||
! Occupied part of the correlation self-energy
|
||||
|
||||
do i=nC+1,nO
|
||||
jb = 0
|
||||
do j=nC+1,nO
|
||||
do b=nO+1,nBas-nR
|
||||
jb = jb + 1
|
||||
eps = w - e(i) + Omega(jb)
|
||||
SigmaC = SigmaC + 2d0*rho(x,i,jb)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
do jb=1,nS
|
||||
eps = w - e(i) + Omega(jb)
|
||||
SigmaC = SigmaC + 2d0*rho(p,i,jb)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Virtual part of the correlation self-energy
|
||||
|
||||
do a=nO+1,nBas-nR
|
||||
jb = 0
|
||||
do j=nC+1,nO
|
||||
do b=nO+1,nBas-nR
|
||||
jb = jb + 1
|
||||
eps = w - e(a) - Omega(jb)
|
||||
SigmaC = SigmaC + 2d0*rho(x,a,jb)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
do jb=1,nS
|
||||
eps = w - e(a) - Omega(jb)
|
||||
SigmaC = SigmaC + 2d0*rho(p,a,jb)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
@ -45,6 +45,7 @@ subroutine UG0W0(doACFDT,exchange_kernel,doXBS,COHSEX,BSE,TDA_W,TDA,dBSE,dTDA,ev
|
||||
! Local variables
|
||||
|
||||
logical :: print_W = .true.
|
||||
integer :: is
|
||||
integer :: ispin
|
||||
double precision :: EcRPA(nspin)
|
||||
double precision :: EcBSE(nspin)
|
||||
@ -126,13 +127,13 @@ subroutine UG0W0(doACFDT,exchange_kernel,doXBS,COHSEX,BSE,TDA_W,TDA,dBSE,dTDA,ev
|
||||
! Compute self-energy !
|
||||
!---------------------!
|
||||
|
||||
call unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,eHF,Omega_sc,rho_sc,SigC)
|
||||
call unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,Omega_sc,rho_sc,SigC)
|
||||
|
||||
!--------------------------------!
|
||||
! Compute renormalization factor !
|
||||
!--------------------------------!
|
||||
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,eHF,Omega_sc,rho_sc,Z)
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,Omega_sc,rho_sc,Z)
|
||||
|
||||
!-----------------------------------!
|
||||
! Solve the quasi-particle equation !
|
||||
@ -151,10 +152,10 @@ subroutine UG0W0(doACFDT,exchange_kernel,doXBS,COHSEX,BSE,TDA_W,TDA,dBSE,dTDA,ev
|
||||
|
||||
! Find graphical solution of the QP equation
|
||||
|
||||
! do is=1,nspin
|
||||
! call QP_graph(nBas,nC(:,is),nO(:,is),nV(:,is),nR(:,is),nS(:,is),eta,eHF(:,is),Omega(:,is), &
|
||||
! rho(:,:,:,ispin),eGWlin(:,is),eGW(:,is))
|
||||
! end do
|
||||
do is=1,nspin
|
||||
call unrestricted_QP_graph(nBas,nC(is),nO(is),nV(is),nR(is),nS_sc,eta,eHF(:,is),Omega_sc, &
|
||||
rho_sc,eGWlin(:,is),eGW(:,is))
|
||||
end do
|
||||
|
||||
end if
|
||||
|
||||
|
48
src/QuAcK/USigmaC.f90
Normal file
48
src/QuAcK/USigmaC.f90
Normal file
@ -0,0 +1,48 @@
|
||||
double precision function USigmaC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Omega,rho)
|
||||
|
||||
! Compute diagonal of the correlation part of the self-energy
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: p
|
||||
double precision,intent(in) :: w
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
integer,intent(in) :: nO
|
||||
integer,intent(in) :: nV
|
||||
integer,intent(in) :: nR
|
||||
integer,intent(in) :: nS
|
||||
double precision,intent(in) :: e(nBas)
|
||||
double precision,intent(in) :: Omega(nS)
|
||||
double precision,intent(in) :: rho(nBas,nBas,nS,nspin)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,a,jb
|
||||
double precision :: eps
|
||||
|
||||
! Initialize
|
||||
|
||||
USigmaC = 0d0
|
||||
|
||||
! Occupied part of the correlation self-energy
|
||||
|
||||
do i=nC+1,nO
|
||||
do jb=1,nS
|
||||
eps = w - e(i) + Omega(jb)
|
||||
USigmaC = uSigmaC + rho(p,i,jb,1)**2*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
end do
|
||||
|
||||
do a=nO+1,nBas-nR
|
||||
do jb=1,nS
|
||||
eps = w - e(a) - Omega(jb)
|
||||
USigmaC = USigmaC + rho(p,a,jb,1)**2*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
end do
|
||||
|
||||
end function USigmaC
|
50
src/QuAcK/dUSigmaC.f90
Normal file
50
src/QuAcK/dUSigmaC.f90
Normal file
@ -0,0 +1,50 @@
|
||||
double precision function dUSigmaC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Omega,rho)
|
||||
|
||||
! Compute the derivative of the correlation part of the self-energy
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: p
|
||||
double precision,intent(in) :: w
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
integer,intent(in) :: nO
|
||||
integer,intent(in) :: nV
|
||||
integer,intent(in) :: nR
|
||||
integer,intent(in) :: nS
|
||||
double precision,intent(in) :: e(nBas)
|
||||
double precision,intent(in) :: Omega(nS)
|
||||
double precision,intent(in) :: rho(nBas,nBas,nS,nspin)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,a,jb
|
||||
double precision :: eps
|
||||
|
||||
! Initialize
|
||||
|
||||
dUSigmaC = 0d0
|
||||
|
||||
! Occupied part of the correlation self-energy
|
||||
|
||||
do i=nC+1,nO
|
||||
do jb=1,nS
|
||||
eps = w - e(i) + Omega(jb)
|
||||
dUSigmaC = dUSigmaC + rho(p,i,jb,1)**2*(eps/(eps**2 + eta**2))**2
|
||||
end do
|
||||
end do
|
||||
|
||||
! Virtual part of the correlation self-energy
|
||||
|
||||
do a=nO+1,nBas-nR
|
||||
do jb=1,nS
|
||||
eps = w - e(a) - Omega(jb)
|
||||
dUSigmaC = dUSigmaC + rho(p,a,jb,1)**2*(eps/(eps**2 + eta**2))**2
|
||||
end do
|
||||
end do
|
||||
|
||||
end function dUSigmaC
|
@ -76,6 +76,8 @@ subroutine unrestricted_Bethe_Salpeter(TDA_W,TDA,dBSE,dTDA,evDyn,spin_conserved,
|
||||
eW,ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,rho_RPA_sc,EcRPA(ispin), &
|
||||
OmRPA_sc,XpY_RPA_sc,XmY_RPA_sc)
|
||||
|
||||
! call print_excitation('RPA@UG0W0',5,nS_sc,OmRPA_sc)
|
||||
|
||||
call unrestricted_excitation_density(nBas,nC,nO,nR,nS_aa,nS_bb,nS_sc,ERI_aaaa,ERI_aabb,ERI_bbbb, &
|
||||
XpY_RPA_sc,rho_RPA_sc)
|
||||
|
||||
|
@ -1,6 +1,5 @@
|
||||
subroutine unrestricted_Bethe_Salpeter_A_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt,lambda, &
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab, &
|
||||
Omega,rho,A_lr)
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,ERI_abab,Omega,rho,A_lr)
|
||||
|
||||
! Compute the extra term for Bethe-Salpeter equation for linear response in the unrestricted formalism
|
||||
|
||||
@ -40,7 +39,7 @@ subroutine unrestricted_Bethe_Salpeter_A_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt
|
||||
! Build part A of the BSE matrix !
|
||||
!--------------------------------!
|
||||
|
||||
! alpha-alpha block
|
||||
! aaaa block
|
||||
|
||||
ia = 0
|
||||
do i=nC(1)+1,nO(1)
|
||||
@ -55,7 +54,7 @@ subroutine unrestricted_Bethe_Salpeter_A_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt
|
||||
do kc=1,nSt
|
||||
eps = Omega(kc)**2 + eta**2
|
||||
chi = chi + rho(i,j,kc,1)*rho(a,b,kc,1)*Omega(kc)/eps &
|
||||
+ rho(i,j,kc,2)*rho(a,b,kc,2)*Omega(kc)/eps
|
||||
+ rho(i,j,kc,1)*rho(a,b,kc,1)*Omega(kc)/eps
|
||||
enddo
|
||||
|
||||
A_lr(ia,jb) = A_lr(ia,jb) - lambda*ERI_aaaa(i,b,j,a) + 2d0*lambda*chi
|
||||
@ -65,7 +64,7 @@ subroutine unrestricted_Bethe_Salpeter_A_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! alpha-beta block
|
||||
! aabb block
|
||||
|
||||
ia = 0
|
||||
do i=nC(1)+1,nO(1)
|
||||
@ -90,7 +89,7 @@ subroutine unrestricted_Bethe_Salpeter_A_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! beta-alpha block
|
||||
! bbaa block
|
||||
|
||||
ia = 0
|
||||
do i=nC(2)+1,nO(2)
|
||||
@ -104,8 +103,8 @@ subroutine unrestricted_Bethe_Salpeter_A_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt
|
||||
chi = 0d0
|
||||
do kc=1,nSt
|
||||
eps = Omega(kc)**2 + eta**2
|
||||
chi = chi + rho(i,j,kc,1)*rho(a,b,kc,1)*Omega(kc)/eps &
|
||||
+ rho(i,j,kc,2)*rho(a,b,kc,2)*Omega(kc)/eps
|
||||
chi = chi + rho(i,j,kc,2)*rho(a,b,kc,2)*Omega(kc)/eps &
|
||||
+ rho(i,j,kc,1)*rho(a,b,kc,1)*Omega(kc)/eps
|
||||
enddo
|
||||
|
||||
A_lr(nSa+ia,jb) = A_lr(nSa+ia,jb) - lambda*ERI_aabb(b,i,a,j) + 2d0*lambda*chi
|
||||
@ -115,7 +114,7 @@ subroutine unrestricted_Bethe_Salpeter_A_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! beta-beta block
|
||||
! bbbb block
|
||||
|
||||
ia = 0
|
||||
do i=nC(2)+1,nO(2)
|
||||
@ -129,7 +128,7 @@ subroutine unrestricted_Bethe_Salpeter_A_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt
|
||||
chi = 0d0
|
||||
do kc=1,nSt
|
||||
eps = Omega(kc)**2 + eta**2
|
||||
chi = chi + rho(i,j,kc,1)*rho(a,b,kc,1)*Omega(kc)/eps &
|
||||
chi = chi + rho(i,j,kc,2)*rho(a,b,kc,2)*Omega(kc)/eps &
|
||||
+ rho(i,j,kc,2)*rho(a,b,kc,2)*Omega(kc)/eps
|
||||
enddo
|
||||
|
||||
|
@ -51,7 +51,7 @@ subroutine unrestricted_Bethe_Salpeter_B_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt
|
||||
do kc=1,nSt
|
||||
eps = Omega(kc)**2 + eta**2
|
||||
chi = chi + rho(i,b,kc,1)*rho(a,j,kc,1)*Omega(kc)/eps &
|
||||
+ rho(i,b,kc,2)*rho(a,j,kc,2)*Omega(kc)/eps
|
||||
+ rho(i,b,kc,1)*rho(a,j,kc,1)*Omega(kc)/eps
|
||||
enddo
|
||||
|
||||
B_lr(ia,jb) = B_lr(ia,jb) - lambda*ERI_aaaa(i,j,b,a) + 2d0*lambda*chi
|
||||
@ -100,8 +100,8 @@ subroutine unrestricted_Bethe_Salpeter_B_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt
|
||||
chi = 0d0
|
||||
do kc=1,nSt
|
||||
eps = Omega(kc)**2 + eta**2
|
||||
chi = chi + rho(i,b,kc,1)*rho(a,j,kc,1)*Omega(kc)/eps &
|
||||
+ rho(i,b,kc,2)*rho(a,j,kc,2)*Omega(kc)/eps
|
||||
chi = chi + rho(i,b,kc,2)*rho(a,j,kc,2)*Omega(kc)/eps &
|
||||
+ rho(i,b,kc,1)*rho(a,j,kc,1)*Omega(kc)/eps
|
||||
enddo
|
||||
|
||||
B_lr(nSa+ia,jb) = B_lr(nSa+ia,jb) - lambda*ERI_aabb(j,i,a,b) + 2d0*lambda*chi
|
||||
@ -125,7 +125,7 @@ subroutine unrestricted_Bethe_Salpeter_B_matrix(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt
|
||||
chi = 0d0
|
||||
do kc=1,nSt
|
||||
eps = Omega(kc)**2 + eta**2
|
||||
chi = chi + rho(i,b,kc,1)*rho(a,j,kc,1)*Omega(kc)/eps &
|
||||
chi = chi + rho(i,b,kc,2)*rho(a,j,kc,2)*Omega(kc)/eps &
|
||||
+ rho(i,b,kc,2)*rho(a,j,kc,2)*Omega(kc)/eps
|
||||
enddo
|
||||
|
||||
|
83
src/QuAcK/unrestricted_QP_graph.f90
Normal file
83
src/QuAcK/unrestricted_QP_graph.f90
Normal file
@ -0,0 +1,83 @@
|
||||
subroutine unrestricted_QP_graph(nBas,nC,nO,nV,nR,nS,eta,eHF,Omega,rho,eGWlin,eGW)
|
||||
|
||||
! Compute the graphical solution of the QP equation
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
integer,intent(in) :: nO
|
||||
integer,intent(in) :: nV
|
||||
integer,intent(in) :: nR
|
||||
integer,intent(in) :: nS
|
||||
double precision,intent(in) :: eta
|
||||
double precision,intent(in) :: eHF(nBas)
|
||||
double precision,intent(in) :: Omega(nS)
|
||||
double precision,intent(in) :: rho(nBas,nBas,nS,nspin)
|
||||
|
||||
double precision,intent(in) :: eGWlin(nBas)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: p
|
||||
integer :: nIt
|
||||
integer,parameter :: maxIt = 10
|
||||
double precision,parameter :: thresh = 1d-6
|
||||
double precision,external :: USigmaC,dUSigmaC
|
||||
double precision :: sig,dsig
|
||||
double precision :: f,df
|
||||
double precision :: w
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: eGW(nBas)
|
||||
|
||||
! Run Newton's algorithm to find the root
|
||||
|
||||
do p=nC+1,nBas-nR
|
||||
|
||||
write(*,*) '-----------------'
|
||||
write(*,'(A10,I3)') 'Orbital ',p
|
||||
write(*,*) '-----------------'
|
||||
|
||||
w = eGWlin(p)
|
||||
nIt = 0
|
||||
f = 1d0
|
||||
write(*,'(A3,I3,A1,1X,3F15.9)') 'It.',nIt,':',w*HaToeV,f
|
||||
|
||||
do while (abs(f) > thresh .and. nIt < maxIt)
|
||||
|
||||
nIt = nIt + 1
|
||||
|
||||
sig = USigmaC(p,w,eta,nBas,nC,nO,nV,nR,nS,eHF,Omega,rho)
|
||||
dsig = dUSigmaC(p,w,eta,nBas,nC,nO,nV,nR,nS,eHF,Omega,rho)
|
||||
f = w - eHF(p) - sig
|
||||
df = 1d0 - dsig
|
||||
|
||||
w = w - f/df
|
||||
|
||||
write(*,'(A3,I3,A1,1X,3F15.9)') 'It.',nIt,':',w*HaToeV,f,sig
|
||||
|
||||
|
||||
end do
|
||||
|
||||
if(nIt == maxIt) then
|
||||
|
||||
write(*,*) 'Newton root search has not converged!'
|
||||
eGW(p) = eGWlin(p)
|
||||
|
||||
else
|
||||
|
||||
eGW(p) = w
|
||||
|
||||
write(*,'(A32,F16.10)') 'Quasiparticle energy (eV) ',eGW(p)*HaToeV
|
||||
write(*,*)
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine unrestricted_QP_graph
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt,e,Omega,rho,Z)
|
||||
subroutine unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nSt,e,Omega,rho,Z)
|
||||
|
||||
! Compute the renormalization factor in the unrestricted formalism
|
||||
|
||||
@ -13,8 +13,6 @@ subroutine unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt,
|
||||
integer,intent(in) :: nO(nspin)
|
||||
integer,intent(in) :: nV(nspin)
|
||||
integer,intent(in) :: nR(nspin)
|
||||
integer,intent(in) :: nSa
|
||||
integer,intent(in) :: nSb
|
||||
integer,intent(in) :: nSt
|
||||
double precision,intent(in) :: e(nBas,nspin)
|
||||
double precision,intent(in) :: Omega(nSt)
|
||||
@ -89,5 +87,4 @@ subroutine unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt,
|
||||
|
||||
Z(:,:) = 1d0/(1d0 + Z(:,:))
|
||||
|
||||
|
||||
end subroutine unrestricted_renormalization_factor
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nSa,nSb,nSt,e,Omega,rho,SigC)
|
||||
subroutine unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nSt,e,Omega,rho,SigC)
|
||||
|
||||
! Compute diagonal of the correlation part of the self-energy
|
||||
|
||||
@ -13,8 +13,6 @@ subroutine unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nSa,nS
|
||||
integer,intent(in) :: nO(nspin)
|
||||
integer,intent(in) :: nV(nspin)
|
||||
integer,intent(in) :: nR(nspin)
|
||||
integer,intent(in) :: nSa
|
||||
integer,intent(in) :: nSb
|
||||
integer,intent(in) :: nSt
|
||||
double precision,intent(in) :: e(nBas,nspin)
|
||||
double precision,intent(in) :: Omega(nSt)
|
||||
|
Loading…
Reference in New Issue
Block a user