diff --git a/src/GF/GF2_ppBSE2_dynamical_kernel_B.f90 b/src/GF/GF2_ppBSE2_dynamical_kernel_B.f90 new file mode 100644 index 0000000..83c3f5a --- /dev/null +++ b/src/GF/GF2_ppBSE2_dynamical_kernel_B.f90 @@ -0,0 +1,136 @@ +subroutine GF2_ppBSE2_dynamic_kernel_B(ispin,eta,nBas,nC,nO,nV,nR,nOO,nVV,lambda,ERI,eGF,KB_dyn) + +! Compute the resonant part of the dynamic BSE2 matrix + + implicit none + include 'parameters.h' + +! Input variables + + integer,intent(in) :: ispin + integer,intent(in) :: nBas + integer,intent(in) :: nC + integer,intent(in) :: nO + integer,intent(in) :: nV + integer,intent(in) :: nR + integer,intent(in) :: nVV + double precision,intent(in) :: eta + double precision,intent(in) :: lambda + double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas) + double precision,intent(in) :: eGF(nBas) + +! Local variables + + double precision :: dem,num + integer :: i,j,k,a,b,c + integer :: ab,ij + +! Output variables + + double precision,intent(out) :: KB_dyn(nVV,nOO) + +! Initialization + + KB_dyn(:,:) = 0d0 + +! Second-order correlation kernel for the block B of the singlet manifold + + if(ispin == 1) then + + ab = 0 + do a=nO+1,nBas-nR + do b=a,nBas-nR + ab = ab + 1 + + ij = 0 + do i=nC+1,nO + do j=i,nO + ij = ij + 1 + + do k=nC+1,nO + do c=nO+1,nBas-nR + + dem = eGF(j) + eGF(k) - eGF(c) - eGF(b) + num = 2d0*ERI(a,k,i,c)*ERI(b,c,j,k) - ERI(a,k,i,c)*ERI(b,c,k,j) & + - ERI(a,k,c,i)*ERI(b,c,j,k) + 2d0*ERI(a,k,c,i)*ERI(b,c,k,j) + + KB_dyn(ia,jb) = KB_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2) + + dem = eGF(j) + eGF(k) - eGF(c) - eGF(a) + num = 2d0*ERI(b,k,i,c)*ERI(a,c,j,k) - ERI(b,k,i,c)*ERI(a,c,k,j) & + - ERI(b,k,c,i)*ERI(a,c,j,k) + 2d0*ERI(b,k,c,i)*ERI(a,c,k,j) + + KB_dyn(ia,jb) = KB_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2) + + dem = eGF(i) + eGF(k) - eGF(c) - eGF(a) + num = 2d0*ERI(a,c,i,k)*ERI(b,k,j,c) - ERI(a,c,i,k)*ERI(b,k,c,j) & + - ERI(a,c,k,i)*ERI(b,k,j,c) + 2d0*ERI(a,c,k,i)*ERI(b,k,c,j) + + KB_dyn(ia,jb) = KB_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2) + + dem = eGF(i) + eGF(k) - eGF(c) - eGF(b) + num = 2d0*ERI(b,c,i,k)*ERI(a,k,j,c) - ERI(b,c,i,k)*ERI(a,k,c,j) & + - ERI(b,c,k,i)*ERI(a,k,j,c) + 2d0*ERI(b,c,k,i)*ERI(a,k,c,j) + + KB_dyn(ia,jb) = KB_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2) + + end do + end do + + end do + end do + + end do + end do + + end if + +! Second-order correlation kernel for the block B of the triplet manifold + + if(ispin == 2) then + + ab = 0 + do a=nO+1,nBas-nR + do b=a+1,nBas-nR + ab = ab + 1 + + ij = 0 + do i=nC+1,nO + do j=i+1,nO + ij = ij + 1 + + do k=nC+1,nO + do c=nO+1,nBas-nR + + dem = eGF(j) + eGF(k) - eGF(c) - eGF(b) + num = 2d0*ERI(a,k,i,c)*ERI(b,c,j,k) - ERI(a,k,i,c)*ERI(b,c,k,j) - ERI(a,k,c,i)*ERI(b,c,j,k) + + KB_dyn(ia,jb) = KB_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2) + + dem = eGF(j) + eGF(k) - eGF(c) - eGF(a) + num = 2d0*ERI(b,k,i,c)*ERI(a,c,j,k) - ERI(b,k,i,c)*ERI(a,c,k,j) - ERI(b,k,c,i)*ERI(a,c,j,k) + + KB_dyn(ia,jb) = KB_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2) + + dem = eGF(i) + eGF(k) - eGF(c) - eGF(a) + num = 2d0*ERI(a,c,i,k)*ERI(b,k,j,c) - ERI(a,c,i,k)*ERI(b,k,c,j) - ERI(a,c,k,i)*ERI(b,k,j,c) + + KB_dyn(ia,jb) = KB_dyn(ia,jb) + 0.5d0*num*dem/(dem**2 + eta**2) + + dem = eGF(i) + eGF(k) - eGF(c) - eGF(b) + num = 2d0*ERI(b,c,i,k)*ERI(a,k,j,c) - ERI(b,c,i,k)*ERI(a,k,c,j) - ERI(b,c,k,i)*ERI(a,k,j,c) + + KB_dyn(ia,jb) = KB_dyn(ia,jb) - 0.5d0*num*dem/(dem**2 + eta**2) + + end do + end do + + end do + end do + + end do + end do + + end if + +end subroutine