4
1
mirror of https://github.com/pfloos/quack synced 2025-01-03 01:56:09 +01:00
This commit is contained in:
Abdallah Ammar 2024-09-11 00:25:47 +02:00
commit 0deffa8638
9 changed files with 35 additions and 650 deletions

View File

@ -1,85 +0,0 @@
subroutine AOtoMO_oooa(nBas,nO,nA,cO,cA,O,ooOoa)
! AO to MO transformation of two-electron integrals for the block oooa
! Semi-direct O(N^5) algorithm
implicit none
! Input variables
integer,intent(in) :: nBas,nO,nA
double precision,intent(in) :: cO(nBas,nO),cA(nBas,nA),O(nBas,nBas,nBas,nBas)
! Local variables
double precision,allocatable :: scr1(:,:,:,:),scr2(:,:,:,:)
integer :: mu,nu,la,si,i,j,k,x
! Output variables
double precision,intent(out) :: ooOoa(nO,nO,nO,nA)
! Memory allocation
allocate(scr1(nBas,nBas,nBas,nBas),scr2(nBas,nBas,nBas,nBas))
write(*,*)
write(*,'(A42)') '----------------------------------------'
write(*,'(A42)') ' AO to MO transformation for oooa block '
write(*,'(A42)') '----------------------------------------'
write(*,*)
scr1 = 0d0
do mu=1,nBas
do nu=1,nBas
do la=1,nBas
do si=1,nBas
do x=1,nA
scr1(mu,nu,la,x) = scr1(mu,nu,la,x) + O(mu,nu,la,si)*cA(si,x)
end do
end do
end do
end do
end do
scr2 = 0d0
do mu=1,nBas
do nu=1,nBas
do la=1,nBas
do i=1,nO
do x=1,nA
scr2(i,nu,la,x) = scr2(i,nu,la,x) + cO(mu,i)*scr1(mu,nu,la,x)
end do
end do
end do
end do
end do
scr1 = 0d0
do nu=1,nBas
do la=1,nBas
do i=1,nO
do k=1,nO
do x=1,nA
scr1(i,nu,k,x) = scr1(i,nu,k,x) + scr2(i,nu,la,x)*cO(la,k)
end do
end do
end do
end do
end do
ooOoa = 0d0
do nu=1,nBas
do i=1,nO
do j=1,nO
do k=1,nO
do x=1,nA
ooOoa(i,j,k,x) = ooOoa(i,j,k,x) + cO(nu,j)*scr1(i,nu,k,x)
end do
end do
end do
end do
end do
deallocate(scr1,scr2)
end subroutine

View File

@ -1,85 +0,0 @@
subroutine AOtoMO_oooo(nBas,nO,cO,O,ooOoo)
! AO to MO transformation of two-electron integrals for the block oooo
! Semi-direct O(N^5) algorithm
implicit none
! Input variables
integer,intent(in) :: nBas,nO
double precision,intent(in) :: cO(nBas,nO),O(nBas,nBas,nBas,nBas)
! Local variables
double precision,allocatable :: scr1(:,:,:,:),scr2(:,:,:,:)
integer :: mu,nu,la,si,i,j,k,l
! Output variables
double precision,intent(out) :: ooOoo(nO,nO,nO,nO)
! Memory allocation
allocate(scr1(nBas,nBas,nBas,nBas),scr2(nBas,nBas,nBas,nBas))
write(*,*)
write(*,'(A42)') '----------------------------------------'
write(*,'(A42)') ' AO to MO transformation for oooo block '
write(*,'(A42)') '----------------------------------------'
write(*,*)
scr1 = 0d0
do mu=1,nBas
do nu=1,nBas
do la=1,nBas
do si=1,nBas
do l=1,nO
scr1(mu,nu,la,l) = scr1(mu,nu,la,l) + O(mu,nu,la,si)*cO(si,l)
end do
end do
end do
end do
end do
scr2 = 0d0
do mu=1,nBas
do nu=1,nBas
do la=1,nBas
do i=1,nO
do l=1,nO
scr2(i,nu,la,l) = scr2(i,nu,la,l) + cO(mu,i)*scr1(mu,nu,la,l)
end do
end do
end do
end do
end do
scr1 = 0d0
do nu=1,nBas
do la=1,nBas
do i=1,nO
do k=1,nO
do l=1,nO
scr1(i,nu,k,l) = scr1(i,nu,k,l) + scr2(i,nu,la,l)*cO(la,k)
end do
end do
end do
end do
end do
ooOoo = 0d0
do nu=1,nBas
do i=1,nO
do j=1,nO
do k=1,nO
do l=1,nO
ooOoo(i,j,k,l) = ooOoo(i,j,k,l) + cO(nu,j)*scr1(i,nu,k,l)
end do
end do
end do
end do
end do
deallocate(scr1,scr2)
end subroutine

View File

@ -1,77 +0,0 @@
subroutine AOtoMO_oovv(nBas,nO,nV,cO,cV,O,ooOvv)
! AO to MO transformation of two-electron integrals for the block oovv
! Semi-direct O(N^5) algorithm
implicit none
! Input variables
integer,intent(in) :: nBas,nO,nV
double precision,intent(in) :: cO(nBas,nO),cV(nBas,nV),O(nBas,nBas,nBas,nBas)
! Local variables
double precision,allocatable :: scr1(:,:,:,:),scr2(:,:,:,:)
integer :: mu,nu,la,si,i,j,a,b
! Output variables
double precision,intent(out) :: ooOvv(nO,nO,nV,nV)
! Memory allocation
allocate(scr1(nBas,nBas,nBas,nBas),scr2(nBas,nBas,nBas,nBas))
scr1 = 0d0
do mu=1,nBas
do nu=1,nBas
do la=1,nBas
do si=1,nBas
do b=1,nV
scr1(mu,nu,la,b) = scr1(mu,nu,la,b) + O(mu,nu,la,si)*cV(si,b)
end do
end do
end do
end do
end do
scr2 = 0d0
do mu=1,nBas
do nu=1,nBas
do la=1,nBas
do i=1,nO
do b=1,nV
scr2(i,nu,la,b) = scr2(i,nu,la,b) + cO(mu,i)*scr1(mu,nu,la,b)
end do
end do
end do
end do
end do
scr1 = 0d0
do nu=1,nBas
do la=1,nBas
do i=1,nO
do a=1,nV
do b=1,nV
scr1(i,nu,a,b) = scr1(i,nu,a,b) + scr2(i,nu,la,b)*cV(la,a)
end do
end do
end do
end do
end do
ooOvv = 0d0
do nu=1,nBas
do i=1,nO
do j=1,nO
do a=1,nV
do b=1,nV
ooOvv(i,j,a,b) = ooOvv(i,j,a,b) + cO(nu,j)*scr1(i,nu,a,b)
end do
end do
end do
end do
end do
end subroutine

View File

@ -1,26 +0,0 @@
subroutine Hartree_matrix_MO_basis(nBas,c,P,G,H)
! Compute Hartree matrix in the MO basis
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
double precision,intent(in) :: c(nBas,nBas),P(nBas,nBas)
double precision,intent(in) :: G(nBas,nBas,nBas,nBas)
! Output variables
double precision,intent(out) :: H(nBas,nBas)
! Compute Hartree matrix in the AO basis
call Hartree_matrix_AO_basis(nBas,P,G,H)
! Transform Hartree matrix in the MO basis
H = matmul(transpose(c),matmul(H,c))
end subroutine

View File

@ -1,26 +0,0 @@
subroutine exchange_matrix_MO_basis(nBas,c,P,G,K)
! Compute exchange matrix in the MO basis
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas
double precision,intent(in) :: c(nBas,nBas),P(nBas,nBas)
double precision,intent(in) :: G(nBas,nBas,nBas,nBas)
! Output variables
double precision,intent(out) :: K(nBas,nBas)
! Compute Hartree Hamiltonian in the AO basis
call exchange_matrix_AO_basis(nBas,P,G,K)
! Transform Coulomb matrix in the MO basis
K = matmul(transpose(c),matmul(K,c))
end subroutine exchange_matrix_MO_basis

View File

@ -31,7 +31,7 @@ subroutine RMP(dotest,doMP2,doMP3,regularize,nOrb,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
! Output variables
!------------------------------------------------------------------------
! Compute MP3 energy
! Compute MP2 energy
!------------------------------------------------------------------------
if(doMP2) then
@ -53,11 +53,12 @@ subroutine RMP(dotest,doMP2,doMP3,regularize,nOrb,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
if(doMP3) then
call wall_time(start_MP)
call RMP3(nOrb,nC,nO,nV,nR,ERI,ENuc,ERHF,eHF)
write(*,*) 'Restricted MP3 NYI... Sorry'
write(*,*)
call wall_time(end_MP)
t_MP = end_MP - start_MP
write(*,'(A65,1X,F9.3,A8)') 'Total wall time for MP2 = ',t_MP,' seconds'
write(*,'(A65,1X,F9.3,A8)') 'Total wall time for MP3 = ',t_MP,' seconds'
write(*,*)
end if

View File

@ -1,194 +0,0 @@
subroutine RMP3(nBasin,nCin,nOin,nVin,nRin,ERI,ENuc,EHF,e)
! Perform third-order Moller-Plesset calculation
implicit none
! Input variables
integer,intent(in) :: nBasin
integer,intent(in) :: nCin
integer,intent(in) :: nOin
integer,intent(in) :: nVin
integer,intent(in) :: nRin
double precision,intent(in) :: ENuc,EHF
double precision,intent(in) :: e(nBasin)
double precision,intent(in) :: ERI(nBasin,nBasin,nBasin,nBasin)
! Local variables
double precision :: eps,E2,EcMP2
double precision :: eps1,eps2,E3a,E3b,E3c
double precision :: EcMP3
integer :: nBas
integer :: nC
integer :: nO
integer :: nV
integer :: nR
integer :: i,j,k,l,a,b,c,d
double precision,allocatable :: se(:)
double precision,allocatable :: eO(:)
double precision,allocatable :: eV(:)
double precision,allocatable :: sERI(:,:,:,:)
double precision,allocatable :: dbERI(:,:,:,:)
double precision,allocatable :: OOOO(:,:,:,:)
double precision,allocatable :: OOVV(:,:,:,:)
double precision,allocatable :: OVVO(:,:,:,:)
double precision,allocatable :: VVOO(:,:,:,:)
double precision,allocatable :: VVVV(:,:,:,:)
! Hello world
write(*,*)
write(*,*)'******************************'
write(*,*)'* Restricted MP3 Calculation *'
write(*,*)'******************************'
write(*,*)
! Spatial to spin orbitals
nBas = 2*nBasin
nC = 2*nCin
nO = 2*nOin
nV = 2*nVin
nR = 2*nRin
allocate(se(nBas),sERI(nBas,nBas,nBas,nBas))
call spatial_to_spin_MO_energy(nBasin,e,nBas,se)
call spatial_to_spin_ERI(nBasin,ERI,nBas,sERI)
! Antysymmetrize ERIs
allocate(dbERI(nBas,nBas,nBas,nBas))
call antisymmetrize_ERI(2,nBas,sERI,dbERI)
deallocate(sERI)
! Form energy denominator
allocate(eO(nO),eV(nV))
eO(:) = se(1:nO)
eV(:) = se(nO+1:nBas)
deallocate(se)
! Create integral batches
allocate(OOOO(nO,nO,nO,nO),OOVV(nO,nO,nV,nV),OVVO(nO,nV,nV,nO),VVOO(nV,nV,nO,nO),VVVV(nV,nV,nV,nV))
OOOO(:,:,:,:) = dbERI( 1:nO , 1:nO , 1:nO , 1:nO )
OOVV(:,:,:,:) = dbERI( 1:nO , 1:nO ,nO+1:nBas,nO+1:nBas)
OVVO(:,:,:,:) = dbERI( 1:nO ,nO+1:nBas,nO+1:nBas, 1:nO )
VVOO(:,:,:,:) = dbERI(nO+1:nBas,nO+1:nBas, 1:nO , 1:nO )
VVVV(:,:,:,:) = dbERI(nO+1:nBas,nO+1:nBas,nO+1:nBas,nO+1:nBas)
deallocate(dbERI)
! Compute MP2 energy
E2 = 0d0
do i=nC+1,nO
do j=nC+1,nO
do a=1,nV-nR
do b=1,nV-nR
eps = eO(i) + eO(j) - eV(a) - eV(b)
E2 = E2 + OOVV(i,j,a,b)*OOVV(i,j,a,b)/eps
end do
end do
end do
end do
EcMP2 = 0.25d0*E2
! Compute MP3 energy
E3a = 0d0
do i=nC+1,nO
do j=nC+1,nO
do k=nC+1,nO
do l=nC+1,nO
do a=1,nV-nR
do b=1,nV-nR
eps1 = eO(i) + eO(j) - eV(a) - eV(b)
eps2 = eO(k) + eO(l) - eV(a) - eV(b)
E3a = E3a + OOVV(i,j,a,b)*OOOO(k,l,i,j)*VVOO(a,b,k,l)/(eps1*eps2)
end do
end do
end do
end do
end do
end do
E3b = 0d0
do i=nC+1,nO
do j=nC+1,nO
do a=1,nV-nR
do b=1,nV-nR
do c=1,nV-nR
do d=1,nV-nR
eps1 = eO(i) + eO(j) - eV(a) - eV(b)
eps2 = eO(i) + eO(j) - eV(c) - eV(d)
E3b = E3b + OOVV(i,j,a,b)*VVVV(a,b,c,d)*VVOO(c,d,i,j)/(eps1*eps2)
end do
end do
end do
end do
end do
end do
E3c = 0d0
do i=nC+1,nO
do j=nC+1,nO
do k=nC+1,nO
do a=1,nV-nR
do b=1,nV-nR
do c=1,nV-nR
eps1 = eO(i) + eO(j) - eV(a) - eV(b)
eps2 = eO(i) + eO(k) - eV(a) - eV(c)
E3c = E3c + OOVV(i,j,a,b)*OVVO(k,b,c,j)*VVOO(a,c,i,k)/(eps1*eps2)
end do
end do
end do
end do
end do
end do
EcMP3 = 0.125d0*E3a + 0.125d0*E3b + E3c
write(*,*)
write(*,'(A32)') '-----------------------'
write(*,'(A32)') ' MP3 calculation '
write(*,'(A32)') '-----------------------'
write(*,'(A32,1X,F16.10)') ' MP2 contribution ',EcMP2
write(*,'(A32,1X,F16.10)') ' MP3 contribution ',EcMP3
write(*,'(A32)') '-----------------------'
write(*,'(A32,1X,F16.10)') ' MP3 correlation energy', EcMP2 + EcMP3
write(*,'(A32,1X,F16.10)') ' MP3 total energy',ENuc + EHF + EcMP2 + EcMP3
write(*,'(A32)') '-----------------------'
write(*,*)
end subroutine

View File

@ -30,7 +30,7 @@ program QuAcK
double precision,allocatable :: T(:,:)
double precision,allocatable :: V(:,:)
double precision,allocatable :: Hc(:,:)
double precision,allocatable :: X(:,:)
double precision,allocatable :: X(:,:),X_tmp(:,:)
double precision,allocatable :: dipole_int_AO(:,:,:)
double precision,allocatable :: ERI_AO(:,:,:,:)
double precision,allocatable :: Uvec(:,:), Uval(:)
@ -71,10 +71,6 @@ program QuAcK
logical :: dotest,doRtest,doUtest,doGtest
integer :: i, j, j0
double precision :: acc_d, acc_nd
double precision, allocatable :: tmp1(:,:), tmp2(:,:)
!-------------!
! Hello World !
!-------------!
@ -180,61 +176,11 @@ program QuAcK
! Compute orthogonalization matrix
!call orthogonalization_matrix(nBas, S, X)
allocate(Uvec(nBas,nBas), Uval(nBas))
Uvec(1:nBas,1:nBas) = S(1:nBas,1:nBas)
call diagonalize_matrix(nBas, Uvec, Uval)
nOrb = 0
do i = 1, nBas
if(Uval(i) > 1d-6) then
Uval(i) = 1d0 / dsqrt(Uval(i))
nOrb = nOrb + 1
else
write(*,*) ' Eigenvalue',i,'too small for canonical orthogonalization'
end if
end do
write(*,'(A38)') '--------------------------------------'
write(*,'(A38,1X,I16)') 'Number of basis functions (AOs)', nBas
write(*,'(A38,1X,I16)') 'Number of basis functions (MOs)', nOrb
write(*,'(A38,1X,F9.3)') ' % of discarded orbitals = ', 100.d0 * (1.d0 - dble(nOrb)/dble(nBas))
write(*,'(A38)') '--------------------------------------'
write(*,*)
j0 = nBas - nOrb
allocate(X_tmp(nBas,nBas))
call orthogonalization_matrix(nBas,nOrb,S,X_tmp)
allocate(X(nBas,nOrb))
do j = j0+1, nBas
do i = 1, nBas
X(i,j-j0) = Uvec(i,j) * Uval(j)
enddo
enddo
deallocate(Uvec, Uval)
!! check if X.T S X = 1_(nOrb,nOrb)
!allocate(tmp1(nOrb,nBas), tmp2(nOrb,nOrb))
!call dgemm("T", "N", nOrb, nBas, nBas, 1.d0, &
! X(1,1), nBas, S(1,1), nBas, &
! 0.d0, tmp1(1,1), nOrb)
!call dgemm("N", "N", nOrb, nOrb, nBas, 1.d0, &
! tmp1(1,1), nOrb, X(1,1), nBas, &
! 0.d0, tmp2(1,1), nOrb)
!acc_d = 0.d0
!acc_nd = 0.d0
!do i = 1, nOrb
! !write(*,'(1000(F15.7,2X))') (tmp2(i,j), j = 1, nOrb)
! acc_d = acc_d + tmp2(i,i)
! do j = 1, nOrb
! if(j == i) cycle
! acc_nd = acc_nd + dabs(tmp2(j,i))
! enddo
!enddo
!print*, ' diag part: ', dabs(acc_d - dble(nOrb)) / dble(nOrb)
!print*, ' non-diag part: ', acc_nd
!deallocate(tmp1, tmp2)
X(1:nBas,1:nOrb) = X_tmp(1:nBas,1:nOrb)
deallocate(X_tmp)
!---------------------!
! Choose QuAcK branch !

View File

@ -1,7 +1,4 @@
! ---
subroutine orthogonalization_matrix(nBas, S, X)
subroutine orthogonalization_matrix(nBas,nOrb,S,X)
! Compute the orthogonalization matrix X
@ -17,113 +14,47 @@ subroutine orthogonalization_matrix(nBas, S, X)
logical :: debug
double precision,allocatable :: UVec(:,:),Uval(:)
double precision,parameter :: thresh = 1d-6
integer,parameter :: ortho_type = 1
integer :: i
integer :: i,j,j0
! Output variables
integer :: nOrb
double precision,intent(out) :: X(nBas,nBas)
debug = .false.
! Type of orthogonalization ortho_type
!
! 1 = Lowdin
! 2 = Canonical
! 3 = SVD
!
allocate(Uvec(nBas,nBas),Uval(nBas))
if(ortho_type == 1) then
!
! S V = V s where
!
! V.T V = 1 and s > 0 (S is positive def)
!
! S = V s V.T
! = V s^0.5 s^0.5 V.T
! = V s^0.5 V.T V s^0.5 V.T
! = S^0.5 S^0.5
!
! where
!
! S^0.5 = V s^0.5 V.T
!
! X = S^(-0.5)
! = V s^(-0.5) V.T
!
! write(*,*)
! write(*,*) ' Lowdin orthogonalization'
! write(*,*)
Uvec = S
call diagonalize_matrix(nBas, Uvec, Uval)
do i = 1, nBas
if(Uval(i) < thresh) then
write(*,*) 'Eigenvalue',i,' is very small in Lowdin orthogonalization = ',Uval(i)
end if
Uval(i) = 1d0 / dsqrt(Uval(i))
end do
call ADAt(nBas, Uvec(1,1), Uval(1), X(1,1))
elseif(ortho_type == 2) then
! write(*,*)
! write(*,*) 'Canonical orthogonalization'
! write(*,*)
Uvec = S
call diagonalize_matrix(nBas, Uvec, Uval)
do i = 1, nBas
if(Uval(i) > thresh) then
Uvec(1:nBas,1:nBas) = S(1:nBas,1:nBas)
call diagonalize_matrix(nBas,Uvec,Uval)
nOrb = 0
do i = 1,nBas
if(Uval(i) > thresh) then
Uval(i) = 1d0 / dsqrt(Uval(i))
nOrb = nOrb + 1
else
write(*,*) ' Eigenvalue',i,'too small for canonical orthogonalization'
end if
end do
else
write(*,'(A50)') '------------------------------------------------'
write(*,'(A40,1X,I5)') 'Number of basis functions = ',nBas
write(*,'(A40,1X,I5)') 'Number of spatial orbitals = ',nOrb
write(*,'(A40,1X,I5)') 'Number of discarded functions = ',nBas - nOrb
write(*,'(A50)') '------------------------------------------------'
write(*,*)
write(*,*) ' Eigenvalue',i,'too small for canonical orthogonalization'
j0 = nBas - nOrb
end if
do j = j0+1,nBas
do i = 1,nBas
X(i,j-j0) = Uvec(i,j) * Uval(j)
enddo
enddo
end do
call AD(nBas, Uvec, Uval)
X = Uvec
elseif(ortho_type == 3) then
! write(*,*)
! write(*,*) ' SVD-based orthogonalization NYI'
! write(*,*)
! Uvec = S
! call diagonalize_matrix(nBas,Uvec,Uval)
! do i=1,nBas
! if(Uval(i) > thresh) then
! Uval(i) = 1d0/sqrt(Uval(i))
! else
! write(*,*) 'Eigenvalue',i,'too small for canonical orthogonalization'
! end if
! end do
!
! call AD(nBas,Uvec,Uval)
! X = Uvec
end if
deallocate(Uvec,Uval)
! Print results