mirror of
https://github.com/pfloos/quack
synced 2024-12-22 20:35:36 +01:00
rm LZ
This commit is contained in:
parent
f1b681b90a
commit
0a2211fa4c
@ -1,82 +0,0 @@
|
||||
subroutine MFL20_lda_correlation_Levy_Zahariev_shift(nEns,wEns,nGrid,weight,rho,EcLZ)
|
||||
|
||||
! Compute Marut-Fromager-Loos's LDA contribution to Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: LDA_centered = .false.
|
||||
integer :: iEns
|
||||
double precision :: EcLZLDA(nsp)
|
||||
double precision,allocatable :: aMFL(:,:)
|
||||
double precision,allocatable :: EcLZeLDA(:,:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ(nsp)
|
||||
|
||||
|
||||
! Allocation
|
||||
|
||||
allocate(aMFL(3,nEns),EcLZeLDA(nsp,nEns))
|
||||
|
||||
! Parameters for weight-dependent LDA correlation functional
|
||||
|
||||
aMFL(1,1) = -0.0238184d0
|
||||
aMFL(2,1) = +0.00575719d0
|
||||
aMFL(3,1) = +0.0830576d0
|
||||
|
||||
aMFL(1,2) = -0.0282814d0
|
||||
aMFL(2,2) = +0.00340758d0
|
||||
aMFL(3,2) = +0.0663967d0
|
||||
|
||||
aMFL(1,3) = -0.0144633d0
|
||||
aMFL(2,3) = -0.0504501d0
|
||||
aMFL(3,3) = +0.0331287d0
|
||||
|
||||
! Compute correlation energy for ground, singly-excited and doubly-excited states
|
||||
|
||||
do iEns=1,nEns
|
||||
|
||||
call elda_correlation_Levy_Zahariev_shift(nEns,aMFL(:,iEns),nGrid,weight(:),rho(:,:),EcLZeLDA(:,iEns))
|
||||
|
||||
end do
|
||||
|
||||
! LDA-centered functional
|
||||
|
||||
EcLZLDA(:) = 0d0
|
||||
|
||||
if(LDA_centered) then
|
||||
|
||||
call VWN5_lda_correlation_Levy_Zahariev_shift(nGrid,weight(:),rho(:,:),EcLZLDA(:))
|
||||
|
||||
do iEns=1,nEns
|
||||
|
||||
EcLZeLDA(:,iEns) = EcLZeLDA(:,iEns) + EcLZLDA(:)- EcLZeLDA(:,1)
|
||||
|
||||
end do
|
||||
|
||||
end if
|
||||
|
||||
! Weight-denpendent functional for ensembles
|
||||
|
||||
EcLZ(:) = 0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
|
||||
EcLZ(:) = EcLZ(:) + wEns(iEns)*EcLZeLDA(:,iEns)
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine MFL20_lda_correlation_Levy_Zahariev_shift
|
@ -1,70 +0,0 @@
|
||||
subroutine MFL20_lda_exchange_Levy_Zahariev_shift(nEns,wEns,nGrid,weight,rho,ExLZ)
|
||||
|
||||
! Compute the Marut-Fromager-Loos LDA exchange contribution to Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: LDA_centered = .true.
|
||||
integer :: iEns
|
||||
double precision :: ExLZLDA
|
||||
double precision,allocatable :: aMFL(:,:)
|
||||
double precision,allocatable :: ExLZeLDA(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: ExLZ
|
||||
|
||||
|
||||
! Allocation
|
||||
|
||||
allocate(aMFL(3,nEns),ExLZeLDA(nEns))
|
||||
|
||||
! Parameters for weight-dependent LDA correlation functional
|
||||
|
||||
! Compute correlation energy for ground, singly-excited and doubly-excited states
|
||||
|
||||
do iEns=1,nEns
|
||||
|
||||
! call elda_exchange_Levy_Zahariev_shift(nEns,aMFL(:,iEns),nGrid,weight(:),rho(:),ExLZeLDA(iEns))
|
||||
|
||||
end do
|
||||
|
||||
! LDA-centered functional
|
||||
|
||||
ExLZLDA = 0d0
|
||||
|
||||
if(LDA_centered) then
|
||||
|
||||
! call S51_lda_exchange_Levy_Zahariev_shift(nGrid,weight(:),rho(:),ExLZLDA)
|
||||
|
||||
do iEns=1,nEns
|
||||
|
||||
ExLZeLDA(iEns) = ExLZeLDA(iEns) + ExLZLDA - ExLZeLDA(1)
|
||||
|
||||
end do
|
||||
|
||||
end if
|
||||
|
||||
! Weight-denpendent functional for ensembles
|
||||
|
||||
ExLZ = 0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
|
||||
ExLZ = ExLZ + wEns(iEns)*ExLZeLDA(iEns)
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine MFL20_lda_exchange_Levy_Zahariev_shift
|
@ -1,78 +0,0 @@
|
||||
subroutine RMFL20_lda_correlation_Levy_Zahariev_shift(nEns,wEns,nGrid,weight,rho,EcLZ)
|
||||
|
||||
! Compute the restricted Marut-Fromager-Loos LDA correlation contribution to Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: LDA_centered = .true.
|
||||
integer :: iEns
|
||||
double precision :: EcLZLDA
|
||||
double precision,allocatable :: aMFL(:,:)
|
||||
double precision,allocatable :: EcLZeLDA(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ
|
||||
|
||||
|
||||
! Allocation
|
||||
|
||||
allocate(aMFL(3,nEns),EcLZeLDA(nEns))
|
||||
|
||||
! Parameters for weight-dependent LDA correlation functional
|
||||
|
||||
aMFL(1,1) = -0.0238184d0
|
||||
aMFL(2,1) = +0.00540994d0
|
||||
aMFL(3,1) = +0.0830766d0
|
||||
|
||||
aMFL(1,2) = -0.0144633d0
|
||||
aMFL(2,2) = -0.0506019d0
|
||||
aMFL(3,2) = +0.0331417d0
|
||||
|
||||
! Compute correlation energy for ground, singly-excited and doubly-excited states
|
||||
|
||||
do iEns=1,nEns
|
||||
|
||||
call restricted_elda_correlation_Levy_Zahariev_shift(nEns,aMFL(:,iEns),nGrid,weight(:),rho(:),EcLZeLDA(iEns))
|
||||
|
||||
end do
|
||||
|
||||
! LDA-centered functional
|
||||
|
||||
EcLZLDA = 0d0
|
||||
|
||||
if(LDA_centered) then
|
||||
|
||||
call RVWN5_lda_correlation_Levy_Zahariev_shift(nGrid,weight(:),rho(:),EcLZLDA)
|
||||
|
||||
do iEns=1,nEns
|
||||
|
||||
EcLZeLDA(iEns) = EcLZeLDA(iEns) + EcLZLDA - EcLZeLDA(1)
|
||||
|
||||
end do
|
||||
|
||||
end if
|
||||
|
||||
! Weight-denpendent functional for ensembles
|
||||
|
||||
EcLZ = 0d0
|
||||
|
||||
do iEns=1,nEns
|
||||
|
||||
EcLZ = EcLZ + wEns(iEns)*EcLZeLDA(iEns)
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine RMFL20_lda_correlation_Levy_Zahariev_shift
|
@ -1,74 +0,0 @@
|
||||
subroutine RVWN5_lda_correlation_Levy_Zahariev_shift(nGrid,weight,rho,EcLZ)
|
||||
|
||||
! Compute the restricted VNW5 LDA correlation contribution to Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r,rs,x
|
||||
double precision :: a_p,x0_p,xx0_p,b_p,c_p,x_p,q_p
|
||||
double precision :: dxdrs,dxdx_p,decdx_p
|
||||
double precision :: drsdra,decdra_p
|
||||
|
||||
double precision :: ec_p
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ
|
||||
|
||||
! Parameters of the functional
|
||||
|
||||
a_p = +0.0621814D0/2D0
|
||||
x0_p = -0.10498d0
|
||||
b_p = +3.72744d0
|
||||
c_p = +12.9352d0
|
||||
|
||||
! Initialization
|
||||
|
||||
EcLZ = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
x = sqrt(rs)
|
||||
|
||||
x_p = x*x + b_p*x + c_p
|
||||
|
||||
xx0_p = x0_p*x0_p + b_p*x0_p + c_p
|
||||
|
||||
q_p = sqrt(4d0*c_p - b_p*b_p)
|
||||
|
||||
ec_p = a_p*( log(x**2/x_p) + 2d0*b_p/q_p*atan(q_p/(2d0*x + b_p)) &
|
||||
- b_p*x0_p/xx0_p*( log((x - x0_p)**2/x_p) + 2d0*(b_p + 2d0*x0_p)/q_p*atan(q_p/(2d0*x + b_p)) ) )
|
||||
|
||||
drsdra = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
dxdx_p = 2d0*x + b_p
|
||||
|
||||
decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
|
||||
- b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
|
||||
|
||||
decdra_p = drsdra*dxdrs*decdx_p
|
||||
|
||||
EcLZ = EcLZ + weight(iG)*decdra_p*r*r
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine RVWN5_lda_correlation_Levy_Zahariev_shift
|
@ -1,199 +0,0 @@
|
||||
subroutine VWN5_lda_correlation_Levy_Zahariev_shift(nGrid,weight,rho,EcLZ)
|
||||
|
||||
! Compute Wigner's LDA contribution to Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: ra,rb,r,rs,x,z
|
||||
double precision :: a_p,x0_p,xx0_p,b_p,c_p,x_p,q_p
|
||||
double precision :: a_f,x0_f,xx0_f,b_f,c_f,x_f,q_f
|
||||
double precision :: a_a,x0_a,xx0_a,b_a,c_a,x_a,q_a
|
||||
double precision :: dfzdz,dxdrs,dxdx_p,dxdx_f,dxdx_a,decdx_p,decdx_f,decdx_a
|
||||
double precision :: dzdra,dfzdra,drsdra,decdra_p,decdra_f,decdra_a,decdra
|
||||
double precision :: dzdrb,dfzdrb,drsdrb,decdrb_p,decdrb_f,decdrb_a,decdrb
|
||||
|
||||
double precision :: ec_z,ec_p,ec_f,ec_a
|
||||
double precision :: fz,d2fz
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ(nsp)
|
||||
|
||||
! Parameters of the functional
|
||||
|
||||
a_p = +0.0621814D0/2D0
|
||||
x0_p = -0.10498d0
|
||||
b_p = +3.72744d0
|
||||
c_p = +12.9352d0
|
||||
|
||||
a_f = +0.0621814D0/4D0
|
||||
x0_f = -0.325d0
|
||||
b_f = +7.06042d0
|
||||
c_f = +18.0578d0
|
||||
|
||||
a_a = -1d0/(6d0*pi**2)
|
||||
x0_a = -0.0047584D0
|
||||
b_a = +1.13107d0
|
||||
c_a = +13.0045d0
|
||||
|
||||
! Initialization
|
||||
|
||||
EcLZ(:) = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
ra = max(0d0,rho(iG,1))
|
||||
rb = max(0d0,rho(iG,2))
|
||||
|
||||
! spin-up contribution
|
||||
|
||||
if(ra > threshold) then
|
||||
|
||||
r = ra + rb
|
||||
|
||||
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
z = (ra - rb)/r
|
||||
x = sqrt(rs)
|
||||
|
||||
fz = (1d0 + z)**(4d0/3d0) + (1d0 - z)**(4d0/3d0) - 2d0
|
||||
fz = fz/(2d0*(2d0**(1d0/3d0) - 1d0))
|
||||
|
||||
d2fz = 4d0/(9d0*(2**(1d0/3d0) - 1d0))
|
||||
|
||||
x_p = x*x + b_p*x + c_p
|
||||
x_f = x*x + b_f*x + c_f
|
||||
x_a = x*x + b_a*x + c_a
|
||||
|
||||
xx0_p = x0_p*x0_p + b_p*x0_p + c_p
|
||||
xx0_f = x0_f*x0_f + b_f*x0_f + c_f
|
||||
xx0_a = x0_a*x0_a + b_a*x0_a + c_a
|
||||
|
||||
q_p = sqrt(4d0*c_p - b_p*b_p)
|
||||
q_f = sqrt(4d0*c_f - b_f*b_f)
|
||||
q_a = sqrt(4d0*c_a - b_a*b_a)
|
||||
|
||||
ec_p = a_p*( log(x**2/x_p) + 2d0*b_p/q_p*atan(q_p/(2d0*x + b_p)) &
|
||||
- b_p*x0_p/xx0_p*( log((x - x0_p)**2/x_p) + 2d0*(b_p + 2d0*x0_p)/q_p*atan(q_p/(2d0*x + b_p)) ) )
|
||||
|
||||
ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
|
||||
- b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
|
||||
|
||||
ec_a = a_a*( log(x**2/x_a) + 2d0*b_a/q_a*atan(q_a/(2d0*x + b_a)) &
|
||||
- b_a*x0_a/xx0_a*( log((x - x0_a)**2/x_a) + 2d0*(b_a + 2d0*x0_a)/q_a*atan(q_a/(2d0*x + b_a)) ) )
|
||||
|
||||
ec_z = ec_p + ec_a*fz/d2fz*(1d0-z**4) + (ec_f - ec_p)*fz*z**4
|
||||
|
||||
dzdra = (1d0 - z)/r
|
||||
dfzdz = (4d0/3d0)*((1d0 + z)**(1d0/3d0) - (1d0 - z)**(1d0/3d0))/(2d0*(2d0**(1d0/3d0) - 1d0))
|
||||
dfzdra = dzdra*dfzdz
|
||||
|
||||
drsdra = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
dxdx_p = 2d0*x + b_p
|
||||
dxdx_f = 2d0*x + b_f
|
||||
dxdx_a = 2d0*x + b_a
|
||||
|
||||
decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
|
||||
- b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
|
||||
|
||||
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
|
||||
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
|
||||
|
||||
decdx_a = a_a*( 2d0/x - 4d0*b_a/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a &
|
||||
- b_a*x0_a/xx0_a*( 2/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
|
||||
|
||||
decdra_p = drsdra*dxdrs*decdx_p
|
||||
decdra_f = drsdra*dxdrs*decdx_f
|
||||
decdra_a = drsdra*dxdrs*decdx_a
|
||||
|
||||
decdra = decdra_p + decdra_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdra/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdra*z**3 &
|
||||
+ (decdra_f - decdra_p)*fz*z**4 + (ec_f - ec_p)*dfzdra*z**4 + 4d0*(ec_f - ec_p)*fz*dzdra*z**3
|
||||
|
||||
EcLZ(2) = EcLZ(2) + weight(iG)*decdra*r*r
|
||||
|
||||
end if
|
||||
|
||||
! spin-down contribution
|
||||
|
||||
if(rb > threshold) then
|
||||
|
||||
r = ra + rb
|
||||
|
||||
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
|
||||
z = (ra - rb)/r
|
||||
x = sqrt(rs)
|
||||
|
||||
fz = (1d0 + z)**(4d0/3d0) + (1d0 - z)**(4d0/3d0) - 2d0
|
||||
fz = fz/(2d0*(2d0**(1d0/3d0) - 1d0))
|
||||
|
||||
d2fz = 4d0/(9d0*(2**(1d0/3d0) - 1d0))
|
||||
|
||||
x_p = x*x + b_p*x + c_p
|
||||
x_f = x*x + b_f*x + c_f
|
||||
x_a = x*x + b_a*x + c_a
|
||||
|
||||
xx0_p = x0_p*x0_p + b_p*x0_p + c_p
|
||||
xx0_f = x0_f*x0_f + b_f*x0_f + c_f
|
||||
xx0_a = x0_a*x0_a + b_a*x0_a + c_a
|
||||
|
||||
q_p = sqrt(4d0*c_p - b_p*b_p)
|
||||
q_f = sqrt(4d0*c_f - b_f*b_f)
|
||||
q_a = sqrt(4d0*c_a - b_a*b_a)
|
||||
|
||||
ec_p = a_p*( log(x**2/x_p) + 2d0*b_p/q_p*atan(q_p/(2d0*x + b_p)) &
|
||||
- b_p*x0_p/xx0_p*( log((x - x0_p)**2/x_p) + 2d0*(b_p + 2d0*x0_p)/q_p*atan(q_p/(2d0*x + b_p)) ) )
|
||||
|
||||
ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
|
||||
- b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
|
||||
|
||||
ec_a = a_a*( log(x**2/x_a) + 2d0*b_a/q_a*atan(q_a/(2d0*x + b_a)) &
|
||||
- b_a*x0_a/xx0_a*( log((x - x0_a)**2/x_a) + 2d0*(b_a + 2d0*x0_a)/q_a*atan(q_a/(2d0*x + b_a)) ) )
|
||||
|
||||
ec_z = ec_p + ec_a*fz/d2fz*(1d0-z**4) + (ec_f - ec_p)*fz*z**4
|
||||
|
||||
dzdrb = -(1d0 + z)/r
|
||||
dfzdz = (4d0/3d0)*((1d0 + z)**(1d0/3d0) - (1d0 - z)**(1d0/3d0))/(2d0*(2d0**(1d0/3d0) - 1d0))
|
||||
dfzdrb = dzdrb*dfzdz
|
||||
|
||||
drsdrb = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
|
||||
dxdrs = 0.5d0/sqrt(rs)
|
||||
|
||||
dxdx_p = 2d0*x + b_p
|
||||
dxdx_f = 2d0*x + b_f
|
||||
dxdx_a = 2d0*x + b_a
|
||||
|
||||
decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
|
||||
- b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
|
||||
|
||||
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
|
||||
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
|
||||
|
||||
decdx_a = a_a*( 2d0/x - 4d0*b_a/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a &
|
||||
- b_a*x0_a/xx0_a*( 2/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
|
||||
|
||||
decdrb_p = drsdrb*dxdrs*decdx_p
|
||||
decdrb_f = drsdrb*dxdrs*decdx_f
|
||||
decdrb_a = drsdrb*dxdrs*decdx_a
|
||||
|
||||
decdrb = decdrb_p + decdrb_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdrb/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdrb*z**3 &
|
||||
+ (decdrb_f - decdrb_p)*fz*z**4 + (ec_f - ec_p)*dfzdrb*z**4 + 4d0*(ec_f - ec_p)*fz*dzdrb*z**3
|
||||
|
||||
EcLZ(2) = EcLZ(2) + weight(iG)*decdrb*r*r
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine VWN5_lda_correlation_Levy_Zahariev_shift
|
@ -1,56 +0,0 @@
|
||||
subroutine W38_lda_correlation_Levy_Zahariev_shift(nGrid,weight,rho,EcLZ)
|
||||
|
||||
! Compute Wigner's LDA contribution to Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: ra,rb,r
|
||||
double precision :: a,d,epsc
|
||||
double precision :: dFcdra,dFcdrb
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ(nsp)
|
||||
|
||||
! Coefficients for Wigner's LDA correlation
|
||||
|
||||
a = 0.04918d0
|
||||
d = 0.349d0
|
||||
|
||||
! Compute LDA correlation matrix in the AO basis
|
||||
|
||||
EcLZ(:) = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
ra = max(0d0,rho(iG,1))
|
||||
rb = max(0d0,rho(iG,2))
|
||||
|
||||
r = ra + rb
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
epsc = ra*rb/(r + d*r**(2d0/3d0))
|
||||
dFcdra = epsc*(d/(3d0*r**(4d0/3d0)*(1d0 + d*r**(-1d0/3d0))) - 2d0/r + 1d0/ra)
|
||||
dFcdrb = epsc*(d/(3d0*r**(4d0/3d0)*(1d0 + d*r**(-1d0/3d0))) - 2d0/r + 1d0/rb)
|
||||
|
||||
EcLZ(2) = EcLZ(2) - weight(iG)*r*r*(dFcdra + dFcdrb)
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
EcLZ(:) = -4d0*a*EcLZ(:)
|
||||
|
||||
end subroutine W38_lda_correlation_Levy_Zahariev_shift
|
@ -1,69 +0,0 @@
|
||||
subroutine correlation_Levy_Zahariev_shift(rung,DFA,nEns,wEns,nGrid,weight,rho,drho,EcLZ)
|
||||
|
||||
! Compute the correlation part of the Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: rung
|
||||
character(len=12),intent(in) :: DFA
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
double precision,intent(in) :: drho(ncart,nGrid,nspin)
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: EcLZLDA(nsp),EcLZGGA(nsp)
|
||||
double precision :: aC
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ(nsp)
|
||||
|
||||
select case (rung)
|
||||
|
||||
! Hartree calculation
|
||||
|
||||
case(0)
|
||||
|
||||
EcLZ(:) = 0d0
|
||||
|
||||
! LDA functionals
|
||||
|
||||
case(1)
|
||||
|
||||
call lda_correlation_Levy_Zahariev_shift(DFA,nEns,wEns(:),nGrid,weight(:),rho(:,:),EcLZ(:))
|
||||
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call print_warning('!!! Individual energies NYI for GGAs !!!')
|
||||
stop
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call print_warning('!!! Individual energies NYI for hybrids !!!')
|
||||
stop
|
||||
|
||||
aC = 0.81d0
|
||||
|
||||
EcLZ(:) = EcLZLDA(:) + aC*(EcLZGGA(:) - EcLZLDA(:))
|
||||
|
||||
! Hartree-Fock calculation
|
||||
|
||||
case(666)
|
||||
|
||||
EcLZ(:) = 0d0
|
||||
|
||||
end select
|
||||
|
||||
end subroutine correlation_Levy_Zahariev_shift
|
@ -1,62 +0,0 @@
|
||||
subroutine elda_correlation_Levy_Zahariev_shift(nEns,aLF,nGrid,weight,rho,EcLZ)
|
||||
|
||||
! Compute Levy-Zahariev LDA correlation shift of 2-glomium for various states
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: aLF(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: ra,rb,r,ec_p
|
||||
double precision :: dFcdra,dFcdrb
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ
|
||||
|
||||
! Compute Levy-Zahariev eLDA correlation shift
|
||||
|
||||
EcLZ = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
ra = max(0d0,rho(iG,1))
|
||||
rb = max(0d0,rho(iG,2))
|
||||
r = ra + rb
|
||||
|
||||
if(ra > threshold) then
|
||||
|
||||
ec_p = aLF(1)/(1d0 + aLF(2)*r**(-1d0/6d0) + aLF(3)*r**(-1d0/3d0))
|
||||
dFcdra = aLF(2)*r**(-1d0/6d0) + 2d0*aLF(3)*r**(-1d0/3d0)
|
||||
dFcdra = dFcdra/(1d0 + aLF(2)*r**(-1d0/6d0) + aLF(3)*r**(-1d0/3d0))
|
||||
dFcdra = ec_p*dFcdra/6d0
|
||||
dFcdra = ec_p + dFcdra
|
||||
|
||||
EcLZ = EcLZ - weight(iG)*r*r*dFcdra
|
||||
|
||||
end if
|
||||
|
||||
if(rb > threshold) then
|
||||
|
||||
ec_p = aLF(1)/(1d0 + aLF(2)*r**(-1d0/6d0) + aLF(3)*r**(-1d0/3d0))
|
||||
dFcdrb = aLF(2)*r**(-1d0/6d0) + 2d0*aLF(3)*r**(-1d0/3d0)
|
||||
dFcdrb = dFcdrb/(1d0 + aLF(2)*r**(-1d0/6d0) + aLF(3)*r**(-1d0/3d0))
|
||||
dFcdrb = ec_p*dFcdrb/6d0
|
||||
dFcdrb = ec_p + dFcdrb
|
||||
|
||||
EcLZ = EcLZ - weight(iG)*r*r*dFcdrb
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine elda_correlation_Levy_Zahariev_shift
|
@ -1,63 +0,0 @@
|
||||
subroutine exchange_Levy_Zahariev_shift(rung,DFA,nEns,wEns,nGrid,weight,rho,drho,ExLZ)
|
||||
|
||||
! Compute the exchange part of the Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: rung
|
||||
character(len=12),intent(in) :: DFA
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: ExLZ
|
||||
|
||||
select case (rung)
|
||||
|
||||
! Hartree calculation
|
||||
|
||||
case(0)
|
||||
|
||||
ExLZ = 0d0
|
||||
|
||||
! LDA functionals
|
||||
|
||||
case(1)
|
||||
|
||||
call lda_exchange_Levy_Zahariev_shift(DFA,nEns,wEns(:),nGrid,weight(:),rho(:),ExLZ)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call print_warning('!!! Exchange LZ shift NYI for GGAs !!!')
|
||||
stop
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call print_warning('!!! Exchange LZ shift NYI for hybrids !!!')
|
||||
stop
|
||||
|
||||
! Hartree-Fock calculation
|
||||
|
||||
case(666)
|
||||
|
||||
ExLZ = 0d0
|
||||
|
||||
end select
|
||||
|
||||
end subroutine exchange_Levy_Zahariev_shift
|
@ -1,51 +0,0 @@
|
||||
subroutine lda_correlation_Levy_Zahariev_shift(DFA,nEns,wEns,nGrid,weight,rho,EcLZ)
|
||||
|
||||
! Compute the lda correlation part of the Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
character(len=12),intent(in) :: DFA
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ(nsp)
|
||||
|
||||
! Select correlation functional
|
||||
|
||||
select case (DFA)
|
||||
|
||||
! Wigner's LDA correlation functional: Wigner, Trans. Faraday Soc. 34 (1938) 678
|
||||
|
||||
case ('W38')
|
||||
|
||||
call W38_lda_correlation_Levy_Zahariev_shift(nGrid,weight(:),rho(:,:),EcLZ(:))
|
||||
|
||||
! Vosko, Wilk and Nusair's functional V: Can. J. Phys. 58 (1980) 1200
|
||||
|
||||
case ('VWN5')
|
||||
|
||||
call VWN5_lda_correlation_Levy_Zahariev_shift(nGrid,weight(:),rho(:,:),EcLZ(:))
|
||||
|
||||
! Loos-Fromager weight-dependent correlation functional: Loos and Fromager (in preparation)
|
||||
|
||||
case ('MFL20')
|
||||
|
||||
call MFL20_lda_correlation_Levy_Zahariev_shift(nEns,wEns,nGrid,weight(:),rho(:,:),EcLZ(:))
|
||||
|
||||
case default
|
||||
|
||||
call print_warning('!!! LDA correlation functional not available !!!')
|
||||
stop
|
||||
|
||||
end select
|
||||
|
||||
end subroutine lda_correlation_Levy_Zahariev_shift
|
@ -1,42 +0,0 @@
|
||||
subroutine lda_exchange_Levy_Zahariev_shift(DFA,nEns,wEns,nGrid,weight,rho,ExLZ)
|
||||
|
||||
! Compute the exchange LDA part of the Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
character(len=12),intent(in) :: DFA
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: ExLZ
|
||||
|
||||
! Select correlation functional
|
||||
|
||||
select case (DFA)
|
||||
|
||||
case ('S51')
|
||||
|
||||
call print_warning('!!! Exchange Levzy-Zahariev shift NYI for S51 !!!')
|
||||
stop
|
||||
|
||||
case ('MFL20')
|
||||
|
||||
call MFL20_lda_exchange_Levy_Zahariev_shift(nEns,wEns,nGrid,weight(:),rho(:),ExLZ)
|
||||
|
||||
case default
|
||||
|
||||
call print_warning('!!! LDA correlation functional not available !!!')
|
||||
stop
|
||||
|
||||
end select
|
||||
|
||||
end subroutine lda_exchange_Levy_Zahariev_shift
|
@ -1,69 +0,0 @@
|
||||
subroutine restricted_correlation_Levy_Zahariev_shift(rung,DFA,nEns,wEns,nGrid,weight,rho,drho,EcLZ)
|
||||
|
||||
! Compute the correlation part of the Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: rung
|
||||
character(len=12),intent(in) :: DFA
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: EcLZLDA,EcLZGGA
|
||||
double precision :: aC
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ
|
||||
|
||||
select case (rung)
|
||||
|
||||
! Hartree calculation
|
||||
|
||||
case(0)
|
||||
|
||||
EcLZ = 0d0
|
||||
|
||||
! LDA functionals
|
||||
|
||||
case(1)
|
||||
|
||||
call restricted_lda_correlation_Levy_Zahariev_shift(DFA,nEns,wEns(:),nGrid,weight(:),rho(:),EcLZ)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call print_warning('!!! Individual energies NYI for GGAs !!!')
|
||||
stop
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call print_warning('!!! Individual energies NYI for hybrids !!!')
|
||||
stop
|
||||
|
||||
aC = 0.81d0
|
||||
|
||||
EcLZ = EcLZLDA + aC*(EcLZGGA - EcLZLDA)
|
||||
|
||||
! Hartree-Fock calculation
|
||||
|
||||
case(666)
|
||||
|
||||
EcLZ = 0d0
|
||||
|
||||
end select
|
||||
|
||||
end subroutine restricted_correlation_Levy_Zahariev_shift
|
@ -1,48 +0,0 @@
|
||||
subroutine restricted_elda_correlation_Levy_Zahariev_shift(nEns,aLF,nGrid,weight,rho,EcLZ)
|
||||
|
||||
! Compute the restricted Levy-Zahariev LDA correlation shift of 2-glomium for various states
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: aLF(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r,ec_p
|
||||
double precision :: dFcdr
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ
|
||||
|
||||
! Compute Levy-Zahariev eLDA correlation shift
|
||||
|
||||
EcLZ = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
ec_p = aLF(1)/(1d0 + aLF(2)*r**(-1d0/6d0) + aLF(3)*r**(-1d0/3d0))
|
||||
dFcdr = aLF(2)*r**(-1d0/6d0) + 2d0*aLF(3)*r**(-1d0/3d0)
|
||||
dFcdr = dFcdr/(1d0 + aLF(2)*r**(-1d0/6d0) + aLF(3)*r**(-1d0/3d0))
|
||||
dFcdr = ec_p*dFcdr/6d0
|
||||
dFcdr = ec_p + dFcdr
|
||||
|
||||
EcLZ = EcLZ - weight(iG)*r*r*dFcdr
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine restricted_elda_correlation_Levy_Zahariev_shift
|
@ -1,45 +0,0 @@
|
||||
subroutine restricted_lda_correlation_Levy_Zahariev_shift(DFA,nEns,wEns,nGrid,weight,rho,EcLZ)
|
||||
|
||||
! Compute the lda correlation part of the Levy-Zahariev shift
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
character(len=12),intent(in) :: DFA
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcLZ
|
||||
|
||||
! Select correlation functional
|
||||
|
||||
select case (DFA)
|
||||
|
||||
! Vosko, Wilk and Nusair's functional V: Can. J. Phys. 58 (1980) 1200
|
||||
|
||||
case ('RVWN5')
|
||||
|
||||
call RVWN5_lda_correlation_Levy_Zahariev_shift(nGrid,weight(:),rho(:),EcLZ)
|
||||
|
||||
! Marut-Fromager-Loos weight-dependent correlation functional
|
||||
|
||||
case ('RMFL20')
|
||||
|
||||
call RMFL20_lda_correlation_Levy_Zahariev_shift(nEns,wEns,nGrid,weight(:),rho(:),EcLZ)
|
||||
|
||||
case default
|
||||
|
||||
call print_warning('!!! LDA correlation functional not available !!!')
|
||||
stop
|
||||
|
||||
end select
|
||||
|
||||
end subroutine restricted_lda_correlation_Levy_Zahariev_shift
|
Loading…
Reference in New Issue
Block a user