4
1
mirror of https://github.com/pfloos/quack synced 2025-01-03 10:05:59 +01:00

starting working on fundamental gap with cloclo

This commit is contained in:
Pierre-Francois Loos 2020-06-23 15:59:19 +02:00
parent 936638cc17
commit 04d1d790f8
7 changed files with 415 additions and 192 deletions

View File

@ -1,7 +1,9 @@
1 2 1 3
S 3 S 3
1 38.4216340 0.0237660 1 38.3600000 0.0238090
2 5.7780300 0.1546790 2 5.7700000 0.1548910
3 1.2417740 0.4696300 3 1.2400000 0.4699870
S 1 S 1
1 0.2979640 1.0000000 1 0.2976000 1.0000000
P 1
1 1.2750000 1.0000000

View File

@ -1,24 +1,24 @@
# Restricted or unrestricted KS calculation # Restricted or unrestricted KS calculation
LIM-RKS eDFT-UKS
# exchange rung: # exchange rung:
# Hartree = 0 # Hartree = 0
# LDA = 1: RS51,RMFL20 # LDA = 1: RS51,RMFL20
# GGA = 2: RB88 # GGA = 2: RB88
# Hybrid = 4 # Hybrid = 4
# Hartree-Fock = 666 # Hartree-Fock = 666
1 RCC 1 S51
# correlation rung: # correlation rung:
# Hartree = 0 # Hartree = 0
# LDA = 1: RVWN5,RMFL20 # LDA = 1: RVWN5,RMFL20
# GGA = 2: # GGA = 2:
# Hybrid = 4: # Hybrid = 4:
# Hartree-Fock = 666 # Hartree-Fock = 666
1 RVWN5 0 H
# quadrature grid SG-n # quadrature grid SG-n
1 1
# Number of states in ensemble (nEns) # Number of states in ensemble (nEns)
3 3
# Ensemble weights: wEns(1),...,wEns(nEns-1) # Ensemble weights: wEns(1),...,wEns(nEns-1)
0.33333 0.33333 1.0 0.0
# GOK-DFT: maxSCF thresh DIIS n_diis guess_type ortho_type # GOK-DFT: maxSCF thresh DIIS n_diis guess_type ortho_type
32 0.00001 T 5 1 1 32 0.00001 T 5 1 1

View File

@ -1,174 +1,9 @@
1 14 1 3
S 8
1 8236.0000000 0.0005310
2 1235.0000000 0.0041080
3 280.8000000 0.0210870
4 79.2700000 0.0818530
5 25.5900000 0.2348170
6 8.9970000 0.4344010
7 3.3190000 0.3461290
8 0.3643000 -0.0089830
S 8
1 8236.0000000 -0.0001130
2 1235.0000000 -0.0008780
3 280.8000000 -0.0045400
4 79.2700000 -0.0181330
5 25.5900000 -0.0557600
6 8.9970000 -0.1268950
7 3.3190000 -0.1703520
8 0.3643000 0.5986840
S 1
1 0.9059000 1.0000000
S 1
1 0.1285000 1.0000000
S 1
1 0.0440200 1.0000000
P 3
1 18.7100000 0.0140310
2 4.1330000 0.0868660
3 1.2000000 0.2902160
P 1
1 0.3827000 1.0000000
P 1
1 0.1209000 1.0000000
P 1
1 0.0356900 1.0000000
D 1
1 1.0970000 1.0000000
D 1
1 0.3180000 1.0000000
D 1
1 0.1000000 1.0000000
F 1
1 0.7610000 1.0000000
F 1
1 0.2680000 1.0000000
2 14
S 8
1 8236.0000000 0.0005310
2 1235.0000000 0.0041080
3 280.8000000 0.0210870
4 79.2700000 0.0818530
5 25.5900000 0.2348170
6 8.9970000 0.4344010
7 3.3190000 0.3461290
8 0.3643000 -0.0089830
S 8
1 8236.0000000 -0.0001130
2 1235.0000000 -0.0008780
3 280.8000000 -0.0045400
4 79.2700000 -0.0181330
5 25.5900000 -0.0557600
6 8.9970000 -0.1268950
7 3.3190000 -0.1703520
8 0.3643000 0.5986840
S 1
1 0.9059000 1.0000000
S 1
1 0.1285000 1.0000000
S 1
1 0.0440200 1.0000000
P 3
1 18.7100000 0.0140310
2 4.1330000 0.0868660
3 1.2000000 0.2902160
P 1
1 0.3827000 1.0000000
P 1
1 0.1209000 1.0000000
P 1
1 0.0356900 1.0000000
D 1
1 1.0970000 1.0000000
D 1
1 0.3180000 1.0000000
D 1
1 0.1000000 1.0000000
F 1
1 0.7610000 1.0000000
F 1
1 0.2680000 1.0000000
3 9
S 3 S 3
1 33.8700000 0.0060680 1 38.3600000 0.0238090
2 5.0950000 0.0453080 2 5.7700000 0.1548910
3 1.1590000 0.2028220 3 1.2400000 0.4699870
S 1 S 1
1 0.3258000 1.0000000 1 0.2976000 1.0000000
S 1
1 0.1027000 1.0000000
S 1
1 0.0252600 1.0000000
P 1 P 1
1 1.4070000 1.0000000 1 1.2750000 1.0000000
P 1
1 0.3880000 1.0000000
P 1
1 0.1020000 1.0000000
D 1
1 1.0570000 1.0000000
D 1
1 0.2470000 1.0000000
4 9
S 3
1 33.8700000 0.0060680
2 5.0950000 0.0453080
3 1.1590000 0.2028220
S 1
1 0.3258000 1.0000000
S 1
1 0.1027000 1.0000000
S 1
1 0.0252600 1.0000000
P 1
1 1.4070000 1.0000000
P 1
1 0.3880000 1.0000000
P 1
1 0.1020000 1.0000000
D 1
1 1.0570000 1.0000000
D 1
1 0.2470000 1.0000000
5 9
S 3
1 33.8700000 0.0060680
2 5.0950000 0.0453080
3 1.1590000 0.2028220
S 1
1 0.3258000 1.0000000
S 1
1 0.1027000 1.0000000
S 1
1 0.0252600 1.0000000
P 1
1 1.4070000 1.0000000
P 1
1 0.3880000 1.0000000
P 1
1 0.1020000 1.0000000
D 1
1 1.0570000 1.0000000
D 1
1 0.2470000 1.0000000
6 9
S 3
1 33.8700000 0.0060680
2 5.0950000 0.0453080
3 1.1590000 0.2028220
S 1
1 0.3258000 1.0000000
S 1
1 0.1027000 1.0000000
S 1
1 0.0252600 1.0000000
P 1
1 1.4070000 1.0000000
P 1
1 0.3880000 1.0000000
P 1
1 0.1020000 1.0000000
D 1
1 1.0570000 1.0000000
D 1
1 0.2470000 1.0000000

View File

@ -29,7 +29,7 @@ program eDFT
double precision,allocatable :: ERI(:,:,:,:) double precision,allocatable :: ERI(:,:,:,:)
double precision,allocatable :: c(:,:) double precision,allocatable :: c(:,:)
character(len=7) :: method character(len=8) :: method
integer :: x_rung,c_rung integer :: x_rung,c_rung
character(len=12) :: x_DFA ,c_DFA character(len=12) :: x_DFA ,c_DFA
logical :: LDA_centered = .true. logical :: LDA_centered = .true.
@ -226,6 +226,23 @@ program eDFT
end if end if
!------------------------------------------------------------------------
! Compute N-centered UKS energy (UNBROKEN)
!------------------------------------------------------------------------
if(method == 'eDFT-UKS') then
call cpu_time(start_KS)
call eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns(:),nGrid,weight(:),maxSCF,thresh,max_diis,guess_type, &
nBas,AO(:,:),dAO(:,:,:),nO(:),nV(:),S(:,:),T(:,:),V(:,:),Hc(:,:),ERI(:,:,:,:),X(:,:),ENuc,Ew)
call cpu_time(end_KS)
t_KS = end_KS - start_KS
write(*,'(A65,1X,F9.3,A8)') 'Total CPU time for UKS = ',t_KS,' seconds'
write(*,*)
end if
!------------------------------------------------------------------------ !------------------------------------------------------------------------
! End of eDFT ! End of eDFT
!------------------------------------------------------------------------ !------------------------------------------------------------------------

372
src/eDFT/eDFT_UKS.f90 Normal file
View File

@ -0,0 +1,372 @@
subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nGrid,weight,maxSCF,thresh,max_diis,guess_type, &
nBas,AO,dAO,nO,nV,S,T,V,Hc,ERI,X,ENuc,Ew)
! Perform unrestricted Kohn-Sham calculation for ensembles
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: x_rung,c_rung
character(len=12),intent(in) :: x_DFA,c_DFA
integer,intent(in) :: nEns
double precision,intent(in) :: wEns(nEns)
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
integer,intent(in) :: maxSCF,max_diis,guess_type
double precision,intent(in) :: thresh
integer,intent(in) :: nBas
double precision,intent(in) :: AO(nBas,nGrid)
double precision,intent(in) :: dAO(ncart,nBas,nGrid)
integer,intent(in) :: nO(nspin),nV(nspin)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: ENuc
! Local variables
integer :: xc_rung
logical :: LDA_centered = .false.
integer :: nSCF,nBasSq
integer :: n_diis
double precision :: conv
double precision :: rcond(nspin)
double precision :: ET(nspin)
double precision :: EV(nspin)
double precision :: EJ(nsp)
double precision :: Ex(nspin)
double precision :: Ec(nsp)
double precision :: Ew
double precision,allocatable :: eps(:,:)
double precision,allocatable :: c(:,:,:)
double precision,allocatable :: cp(:,:,:)
double precision,allocatable :: J(:,:,:)
double precision,allocatable :: F(:,:,:)
double precision,allocatable :: Fp(:,:,:)
double precision,allocatable :: Fx(:,:,:)
double precision,allocatable :: FxHF(:,:,:)
double precision,allocatable :: Fc(:,:,:)
double precision,allocatable :: err(:,:,:)
double precision,allocatable :: err_diis(:,:,:)
double precision,allocatable :: F_diis(:,:,:)
double precision,external :: trace_matrix
double precision,external :: electron_number
double precision,allocatable :: Pw(:,:,:)
double precision,allocatable :: rhow(:,:)
double precision,allocatable :: drhow(:,:,:)
double precision :: nEl(nspin)
double precision,allocatable :: P(:,:,:,:)
double precision,allocatable :: rho(:,:,:)
double precision,allocatable :: drho(:,:,:,:)
double precision :: E(nEns)
double precision :: Om(nEns)
integer :: ispin,iEns
! Hello world
write(*,*)
write(*,*)'************************************************'
write(*,*)'* Unrestricted Kohn-Sham calculation *'
write(*,*)'* *** for ensembles *** *'
write(*,*)'************************************************'
write(*,*)
! Useful stuff
nBasSq = nBas*nBas
!------------------------------------------------------------------------
! Rung of Jacob's ladder
!------------------------------------------------------------------------
! Select rung for exchange
write(*,*)
write(*,*) '*******************************************************************'
write(*,*) '* Exchange rung *'
write(*,*) '*******************************************************************'
call select_rung(x_rung,x_DFA)
! Select rung for correlation
write(*,*)
write(*,*) '*******************************************************************'
write(*,*) '* Correlation rung *'
write(*,*) '*******************************************************************'
call select_rung(c_rung,c_DFA)
! Overall rung
xc_rung = max(x_rung,c_rung)
! Memory allocation
allocate(eps(nBas,nspin),c(nBas,nBas,nspin),cp(nBas,nBas,nspin), &
J(nBas,nBas,nspin),F(nBas,nBas,nspin),Fp(nBas,nBas,nspin), &
Fx(nBas,nBas,nspin),FxHF(nBas,nBas,nspin),Fc(nBas,nBas,nspin),err(nBas,nBas,nspin), &
Pw(nBas,nBas,nspin),rhow(nGrid,nspin),drhow(ncart,nGrid,nspin), &
err_diis(nBasSq,max_diis,nspin),F_diis(nBasSq,max_diis,nspin), &
P(nBas,nBas,nspin,nEns),rho(nGrid,nspin,nEns),drho(ncart,nGrid,nspin,nEns))
! Guess coefficients and eigenvalues
if(guess_type == 1) then
do ispin=1,nspin
cp(:,:,ispin) = matmul(transpose(X(:,:)),matmul(Hc(:,:),X(:,:)))
call diagonalize_matrix(nBas,cp(:,:,ispin),eps(:,ispin))
c(:,:,ispin) = matmul(X(:,:),cp(:,:,ispin))
end do
else if(guess_type == 2) then
do ispin=1,nspin
call random_number(F(:,:,ispin))
end do
else
print*,'Wrong guess option'
stop
end if
! Initialization
nSCF = 0
conv = 1d0
nEl(:) = 0d0
Ex(:) = 0d0
Ec(:) = 0d0
Fx(:,:,:) = 0d0
FxHF(:,:,:) = 0d0
Fc(:,:,:) = 0d0
n_diis = 0
F_diis(:,:,:) = 0d0
err_diis(:,:,:) = 0d0
!------------------------------------------------------------------------
! Main SCF loop
!------------------------------------------------------------------------
write(*,*)
write(*,*)'------------------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A10,1X,A1,1X,A10,1X,A1,1X)') &
'|','#','|','E(KS)','|','Ex(KS)','|','Ec(KS)','|','Conv','|','nEl','|'
write(*,*)'------------------------------------------------------------------------------------------'
do while(conv > thresh .and. nSCF < maxSCF)
! Increment
nSCF = nSCF + 1
!------------------------------------------------------------------------
! Compute density matrix
!------------------------------------------------------------------------
call unrestricted_density_matrix(nBas,nEns,nO(:),c(:,:,:),P(:,:,:,:))
! Weight-dependent density matrix
Pw(:,:,:) = 0d0
do iEns=1,nEns
Pw(:,:,:) = Pw(:,:,:) + wEns(iEns)*P(:,:,:,iEns)
end do
!------------------------------------------------------------------------
! Compute one-electron density and its gradient if necessary
!------------------------------------------------------------------------
do ispin=1,nspin
do iEns=1,nEns
call density(nGrid,nBas,P(:,:,ispin,iEns),AO(:,:),rho(:,ispin,iEns))
end do
end do
! Weight-dependent one-electron density
rhow(:,:) = 0d0
do iEns=1,nEns
rhow(:,:) = rhow(:,:) + wEns(iEns)*rho(:,:,iEns)
end do
if(xc_rung > 1 .and. xc_rung /= 666) then
! Ground state density
do ispin=1,nspin
do iEns=1,nEns
call gradient_density(nGrid,nBas,P(:,:,ispin,iEns),AO(:,:),dAO(:,:,:),drho(:,:,ispin,iEns))
end do
end do
! Weight-dependent one-electron density
drhow(:,:,:) = 0d0
do iEns=1,nEns
drhow(:,:,:) = drhow(:,:,:) + wEns(iEns)*drho(:,:,:,iEns)
end do
end if
! Build Coulomb repulsion
do ispin=1,nspin
call hartree_coulomb(nBas,Pw(:,:,ispin),ERI(:,:,:,:),J(:,:,ispin))
end do
! Compute exchange potential
do ispin=1,nspin
call exchange_potential(x_rung,x_DFA,LDA_centered,nEns,wEns(:),nGrid,weight(:),nBas,Pw(:,:,ispin),ERI(:,:,:,:), &
AO(:,:),dAO(:,:,:),rhow(:,ispin),drhow(:,:,ispin),Fx(:,:,ispin),FxHF(:,:,ispin))
end do
! Compute correlation potential
call correlation_potential(c_rung,c_DFA,nEns,wEns(:),nGrid,weight(:),nBas,AO(:,:),dAO(:,:,:),rhow(:,:),drhow(:,:,:),Fc(:,:,:))
! Build Fock operator
do ispin=1,nspin
F(:,:,ispin) = Hc(:,:) + J(:,:,ispin) + J(:,:,mod(ispin,2)+1) + Fx(:,:,ispin) + Fc(:,:,ispin)
end do
! Check convergence
do ispin=1,nspin
err(:,:,ispin) = matmul(F(:,:,ispin),matmul(Pw(:,:,ispin),S(:,:))) - matmul(matmul(S(:,:),Pw(:,:,ispin)),F(:,:,ispin))
end do
conv = maxval(abs(err(:,:,:)))
! DIIS extrapolation
n_diis = min(n_diis+1,max_diis)
do ispin=1,nspin
call DIIS_extrapolation(rcond(ispin),nBasSq,nBasSq,n_diis, &
err_diis(:,:,ispin),F_diis(:,:,ispin),err(:,:,ispin),F(:,:,ispin))
end do
! Reset DIIS if required
if(minval(rcond(:)) < 1d-15) n_diis = 0
! Transform Fock matrix in orthogonal basis
do ispin=1,nspin
Fp(:,:,ispin) = matmul(transpose(X(:,:)),matmul(F(:,:,ispin),X(:,:)))
end do
! Diagonalize Fock matrix to get eigenvectors and eigenvalues
cp(:,:,:) = Fp(:,:,:)
do ispin=1,nspin
call diagonalize_matrix(nBas,cp(:,:,ispin),eps(:,ispin))
end do
! Back-transform eigenvectors in non-orthogonal basis
do ispin=1,nspin
c(:,:,ispin) = matmul(X(:,:),cp(:,:,ispin))
end do
!------------------------------------------------------------------------
! Compute KS energy
!------------------------------------------------------------------------
! Kinetic energy
do ispin=1,nspin
ET(ispin) = trace_matrix(nBas,matmul(Pw(:,:,ispin),T(:,:)))
end do
! Potential energy
do ispin=1,nspin
EV(ispin) = trace_matrix(nBas,matmul(Pw(:,:,ispin),V(:,:)))
end do
! Coulomb energy
EJ(1) = 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
EJ(2) = trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2)))
EJ(3) = 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
! Exchange energy
do ispin=1,nspin
call exchange_energy(x_rung,x_DFA,LDA_centered,nEns,wEns(:),nGrid,weight(:),nBas, &
Pw(:,:,ispin),FxHF(:,:,ispin),rhow(:,ispin),drhow(:,:,ispin),Ex(ispin))
end do
! Correlation energy
call correlation_energy(c_rung,c_DFA,nEns,wEns(:),nGrid,weight(:),rhow(:,:),drhow(:,:,:),Ec)
! Total energy
Ew = sum(ET(:)) + sum(EV(:)) + sum(EJ(:)) + sum(Ex(:)) + sum(Ec(:))
! Check the grid accuracy by computing the number of electrons
do ispin=1,nspin
nEl(ispin) = electron_number(nGrid,weight(:),rhow(:,ispin))
end do
! Dump results
write(*,'(1X,A1,1X,I3,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F10.6,1X,A1,1X,F10.6,1X,A1,1X)') &
'|',nSCF,'|',Ew + ENuc,'|',sum(Ex(:)),'|',sum(Ec(:)),'|',conv,'|',sum(nEl(:)),'|'
end do
write(*,*)'------------------------------------------------------------------------------------------'
!------------------------------------------------------------------------
! End of SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
stop
end if
! Compute final KS energy
call print_UKS(nBas,nO(:),eps(:,:),c(:,:,:),ENuc,ET(:),EV(:),EJ(:),Ex(:),Ec(:),Ew)
!------------------------------------------------------------------------
! Compute individual energies from ensemble energy
!------------------------------------------------------------------------
! call individual_energy(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns(:),nGrid,weight(:),nBas, &
! AO(:,:),dAO(:,:,:),nO(:),nV(:),T(:,:),V(:,:),ERI(:,:,:,:),ENuc, &
! Pw(:,:,:),rhow(:,:),drhow(:,:,:),J(:,:,:),Fx(:,:,:),FxHF(:,:,:), &
! Fc(:,:,:),P(:,:,:,:),rho(:,:,:),drho(:,:,:,:),E(:),Om(:))
end subroutine eDFT_UKS

View File

@ -12,7 +12,7 @@ subroutine read_options(method,x_rung,x_DFA,c_rung,c_DFA,SGn,nEns,wEns,maxSCF,th
! Output variables ! Output variables
character(len=7),intent(out) :: method character(len=8),intent(out) :: method
integer,intent(out) :: x_rung,c_rung integer,intent(out) :: x_rung,c_rung
character(len=12),intent(out) :: x_DFA, c_DFA character(len=12),intent(out) :: x_DFA, c_DFA
integer,intent(out) :: SGn integer,intent(out) :: SGn

View File

@ -22,26 +22,23 @@ subroutine unrestricted_density_matrix(nBas,nEns,nO,c,P)
double precision,intent(out) :: P(nBas,nBas,nspin,nEns) double precision,intent(out) :: P(nBas,nBas,nspin,nEns)
! Ground state density matrix ! N-electron ground state
iEns = 1 iEns = 1
do ispin=1,nspin do ispin=1,nspin
P(:,:,ispin,iEns) = matmul(c(:,1:nO(ispin),ispin),transpose(c(:,1:nO(ispin),ispin))) P(:,:,ispin,iEns) = matmul(c(:,1:nO(ispin),ispin),transpose(c(:,1:nO(ispin),ispin)))
end do end do
! Singly-excited state density matrix ! (N-1)-electron state: remove spin-down electrons
iEns = 2 iEns = 2
P(:,:,1,iEns) = matmul(c(:,1:nO(1)-1,1),transpose(c(:,1:nO(1)-1,1))) & P(:,:,1,iEns) = matmul(c(:,1:nO(1) ,1),transpose(c(:,1:nO(1) ,1)))
+ matmul(c(:,nO(1)+1:nO(1)+1,1),transpose(c(:,nO(1)+1:nO(1)+1,1))) P(:,:,2,iEns) = matmul(c(:,1:nO(2)-1,2),transpose(c(:,1:nO(2)-1,2)))
P(:,:,2,iEns) = matmul(c(:,1:nO(2),2),transpose(c(:,1:nO(2),2)))
! Doubly-excited state density matrix ! (N+1)-electron state: remove spin-up electrons
iEns = 3 iEns = 3
do ispin=1,nspin P(:,:,1,iEns) = matmul(c(:,1:nO(1)+1,1),transpose(c(:,1:nO(1)+1,1)))
P(:,:,ispin,iEns) = matmul(c(:,1:nO(ispin)-1,ispin),transpose(c(:,1:nO(ispin)-1,ispin))) & P(:,:,2,iEns) = matmul(c(:,1:nO(2) ,2),transpose(c(:,1:nO(2) ,2)))
+ matmul(c(:,nO(ispin)+1:nO(ispin)+1,ispin),transpose(c(:,nO(ispin)+1:nO(ispin)+1,ispin)))
end do
end subroutine unrestricted_density_matrix end subroutine unrestricted_density_matrix