2019-02-07 22:49:12 +01:00
|
|
|
recursive function VRR2e(m,AngMomBra,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
|
|
|
result(a1a2)
|
|
|
|
|
|
|
|
! Compute two-electron integrals over Gaussian geminals
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
include 'parameters.h'
|
|
|
|
|
|
|
|
! Input variables
|
|
|
|
|
|
|
|
integer,intent(in) :: m
|
|
|
|
integer,intent(in) :: AngMomBra(2,3)
|
|
|
|
integer,intent(in) :: maxm
|
|
|
|
double precision,intent(in) :: Om(0:maxm),ExpZi(2),ExpY(2,2)
|
|
|
|
double precision,intent(in) :: CenterZA(2,3),CenterY(2,2,3)
|
|
|
|
|
|
|
|
! Local variables
|
|
|
|
|
|
|
|
logical :: NegAngMomBra(2)
|
|
|
|
integer :: TotAngMomBra(2)
|
|
|
|
integer :: a1m(2,3),a2m(2,3)
|
|
|
|
integer :: a1mm(2,3),a2mm(2,3)
|
|
|
|
integer :: a1m2m(2,3)
|
|
|
|
double precision :: fZ(2)
|
|
|
|
integer :: i,j,xyz
|
|
|
|
|
|
|
|
! Output variables
|
|
|
|
|
|
|
|
double precision :: a1a2
|
|
|
|
|
|
|
|
do i=1,2
|
|
|
|
NegAngMomBra(i) = AngMomBra(i,1) < 0 .or. AngMomBra(i,2) < 0 .or. AngMomBra(i,3) < 0
|
|
|
|
TotAngMomBra(i) = AngMomBra(i,1) + AngMomBra(i,2) + AngMomBra(i,3)
|
2019-03-20 13:38:42 +01:00
|
|
|
end do
|
2019-02-07 22:49:12 +01:00
|
|
|
|
|
|
|
fZ(1) = ExpY(1,2)*ExpZi(1)
|
|
|
|
fZ(2) = ExpY(1,2)*ExpZi(2)
|
|
|
|
|
|
|
|
!------------------------------------------------------------------------
|
|
|
|
! Termination condition
|
|
|
|
!------------------------------------------------------------------------
|
|
|
|
! if(NegAngMomBra(1) .or. NegAngMomBra(2)) then
|
|
|
|
! a1a2 = 0d0
|
|
|
|
!------------------------------------------------------------------------
|
|
|
|
! Fundamental integral: (00|00)^m
|
|
|
|
!------------------------------------------------------------------------
|
|
|
|
! elseif(TotAngMomBra(1) == 0 .and. TotAngMomBra(2) == 0) then
|
|
|
|
if(TotAngMomBra(1) == 0 .and. TotAngMomBra(2) == 0) then
|
|
|
|
a1a2 = Om(m)
|
|
|
|
!------------------------------------------------------------------------
|
|
|
|
! 1st vertical recurrence relation (4 terms): (a+0|00)^m
|
|
|
|
!------------------------------------------------------------------------
|
|
|
|
elseif(TotAngMomBra(2) == 0) then
|
|
|
|
do i=1,2
|
|
|
|
do j=1,3
|
|
|
|
a1m(i,j) = AngMomBra(i,j)
|
|
|
|
a1mm(i,j) = AngMomBra(i,j)
|
2019-03-20 13:38:42 +01:00
|
|
|
end do
|
|
|
|
end do
|
2019-02-07 22:49:12 +01:00
|
|
|
! Loop over cartesian directions
|
|
|
|
xyz = 0
|
|
|
|
if (AngMomBra(1,1) > 0) then
|
|
|
|
xyz = 1
|
|
|
|
elseif(AngMomBra(1,2) > 0) then
|
|
|
|
xyz = 2
|
|
|
|
elseif(AngMomBra(1,3) > 0) then
|
|
|
|
xyz = 3
|
|
|
|
else
|
|
|
|
write(*,*) 'xyz = 0 in VRR2e!'
|
2019-03-20 13:38:42 +01:00
|
|
|
end if
|
2019-02-07 22:49:12 +01:00
|
|
|
! End loop over cartesian directions
|
|
|
|
a1m(1,xyz) = a1m(1,xyz) - 1
|
|
|
|
a1mm(1,xyz) = a1mm(1,xyz) - 2
|
|
|
|
if(AngMomBra(1,xyz) <= 0) then
|
|
|
|
a1a2 = 0d0
|
|
|
|
elseif(AngMomBra(1,xyz) == 1) then
|
|
|
|
a1a2 = CenterZA(1,xyz)*VRR2e(m,a1m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
|
|
|
- fZ(1)*CenterY(1,2,xyz)*VRR2e(m+1,a1m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY)
|
|
|
|
else
|
|
|
|
a1a2 = CenterZA(1,xyz)*VRR2e(m,a1m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
|
|
|
- fZ(1)*CenterY(1,2,xyz)*VRR2e(m+1,a1m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
|
|
|
+ 0.5d0*dble(AngMomBra(1,xyz)-1)*ExpZi(1)*( &
|
|
|
|
VRR2e(m,a1mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
|
|
|
- fZ(1)*VRR2e(m+1,a1mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY))
|
2019-03-20 13:38:42 +01:00
|
|
|
end if
|
2019-02-07 22:49:12 +01:00
|
|
|
!------------------------------------------------------------------------
|
|
|
|
! 2nd vertical recurrence relation (5 terms): (a0|c+0)^m
|
|
|
|
!------------------------------------------------------------------------
|
|
|
|
else
|
|
|
|
do i=1,2
|
|
|
|
do j=1,3
|
|
|
|
a2m(i,j) = AngMomBra(i,j)
|
|
|
|
a2mm(i,j) = AngMomBra(i,j)
|
|
|
|
a1m2m(i,j) = AngMomBra(i,j)
|
2019-03-20 13:38:42 +01:00
|
|
|
end do
|
|
|
|
end do
|
2019-02-07 22:49:12 +01:00
|
|
|
! Loop over cartesian directions
|
|
|
|
xyz = 0
|
|
|
|
if (AngMomBra(2,1) > 0) then
|
|
|
|
xyz = 1
|
|
|
|
elseif(AngMomBra(2,2) > 0) then
|
|
|
|
xyz = 2
|
|
|
|
elseif(AngMomBra(2,3) > 0) then
|
|
|
|
xyz = 3
|
|
|
|
else
|
|
|
|
write(*,*) 'xyz = 0 in VRR2e!'
|
2019-03-20 13:38:42 +01:00
|
|
|
end if
|
2019-02-07 22:49:12 +01:00
|
|
|
! End loop over cartesian directions
|
|
|
|
a2m(2,xyz) = a2m(2,xyz) - 1
|
|
|
|
a2mm(2,xyz) = a2mm(2,xyz) - 2
|
|
|
|
a1m2m(1,xyz) = a1m2m(1,xyz) - 1
|
|
|
|
a1m2m(2,xyz) = a1m2m(2,xyz) - 1
|
|
|
|
if(AngMomBra(2,xyz) <= 0) then
|
|
|
|
a1a2 = 0d0
|
|
|
|
elseif(AngMomBra(2,xyz) == 1) then
|
|
|
|
a1a2 = CenterZA(2,xyz)*VRR2e(m,a2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
|
|
|
+ fZ(2)*CenterY(1,2,xyz)*VRR2e(m+1,a2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY)
|
|
|
|
else
|
|
|
|
a1a2 = CenterZA(2,xyz)*VRR2e(m,a2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
|
|
|
+ fZ(2)*CenterY(1,2,xyz)*VRR2e(m+1,a2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
|
|
|
+ 0.5d0*dble(AngMomBra(2,xyz)-1)*ExpZi(2)*( &
|
|
|
|
VRR2e(m,a2mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY) &
|
|
|
|
- fZ(2)*VRR2e(m+1,a2mm,maxm,Om,ExpZi,ExpY,CenterZA,CenterY))
|
2019-03-20 13:38:42 +01:00
|
|
|
end if
|
2019-02-07 22:49:12 +01:00
|
|
|
if(AngMomBra(1,xyz) > 0) &
|
|
|
|
a1a2 = a1a2 &
|
|
|
|
+ 0.5d0*dble(AngMomBra(1,xyz))*fZ(2)*ExpZi(1)*VRR2e(m+1,a1m2m,maxm,Om,ExpZi,ExpY,CenterZA,CenterY)
|
2019-03-20 13:38:42 +01:00
|
|
|
end if
|
2019-02-07 22:49:12 +01:00
|
|
|
|
|
|
|
end function VRR2e
|