2020-07-02 18:49:42 +02:00
|
|
|
subroutine UCC_lda_exchange_individual_energy(nEns,wEns,aCC_w1,aCC_w2,nGrid,weight,rhow,rho,Ex)
|
2020-07-02 14:27:38 +02:00
|
|
|
|
|
|
|
! Compute the unrestricted version of the curvature-corrected exchange functional
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
include 'parameters.h'
|
|
|
|
|
|
|
|
! Input variables
|
|
|
|
|
|
|
|
integer,intent(in) :: nEns
|
|
|
|
double precision,intent(in) :: wEns(nEns)
|
2020-07-02 22:15:29 +02:00
|
|
|
double precision,intent(in) :: aCC_w1(3)
|
|
|
|
double precision,intent(in) :: aCC_w2(3)
|
2020-07-02 14:27:38 +02:00
|
|
|
integer,intent(in) :: nGrid
|
|
|
|
double precision,intent(in) :: weight(nGrid)
|
|
|
|
double precision,intent(in) :: rhow(nGrid)
|
|
|
|
double precision,intent(in) :: rho(nGrid)
|
|
|
|
|
|
|
|
! Local variables
|
|
|
|
|
|
|
|
integer :: iG
|
|
|
|
double precision :: r,rI,alpha
|
|
|
|
double precision :: e_p,dedr
|
|
|
|
|
|
|
|
double precision :: a1,b1,c1,w1
|
|
|
|
double precision :: a2,b2,c2,w2
|
|
|
|
double precision :: Fx1,Fx2,Cx
|
|
|
|
|
|
|
|
! Output variables
|
|
|
|
|
|
|
|
double precision,intent(out) :: Ex
|
|
|
|
|
|
|
|
! Single excitation parameter
|
|
|
|
|
|
|
|
! a1 = 0.0d0
|
|
|
|
! b1 = 0.0d0
|
|
|
|
! c1 = 0.0d0
|
|
|
|
|
|
|
|
! Parameters for H2 at equilibrium
|
|
|
|
|
|
|
|
! a2 = +0.5751782560799208d0
|
|
|
|
! b2 = -0.021108186591137282d0
|
|
|
|
! c2 = -0.36718902716347124d0
|
|
|
|
|
|
|
|
! Parameters for stretch H2
|
|
|
|
|
|
|
|
! a2 = + 0.01922622507087411d0
|
|
|
|
! b2 = - 0.01799647558018601d0
|
|
|
|
! c2 = - 0.022945430666782573d0
|
|
|
|
|
|
|
|
! Parameters for He
|
|
|
|
|
|
|
|
! a2 = 1.9125735895875828d0
|
|
|
|
! b2 = 2.715266992840757d0
|
|
|
|
! c2 = 2.1634223380633086d0
|
|
|
|
|
|
|
|
! Parameters for He N -> N-1
|
|
|
|
|
2020-07-02 18:49:42 +02:00
|
|
|
a1 = aCC_w1(1)
|
|
|
|
b1 = aCC_w1(2)
|
|
|
|
c1 = aCC_w1(3)
|
2020-07-02 14:27:38 +02:00
|
|
|
|
|
|
|
! Parameters for He N -> N+1
|
|
|
|
|
2020-07-02 18:49:42 +02:00
|
|
|
a2 = aCC_w2(1)
|
|
|
|
b2 = aCC_w2(2)
|
|
|
|
c2 = aCC_w2(3)
|
2020-07-02 14:27:38 +02:00
|
|
|
|
|
|
|
! Cx coefficient for unrestricted Slater LDA exchange
|
|
|
|
|
|
|
|
alpha = -(3d0/2d0)*(3d0/(4d0*pi))**(1d0/3d0)
|
|
|
|
|
|
|
|
w1 = wEns(2)
|
|
|
|
Fx1 = 1d0 - w1*(1d0 - w1)*(a1 + b1*(w1 - 0.5d0) + c1*(w1 - 0.5d0)**2)
|
|
|
|
|
|
|
|
w2 = wEns(3)
|
|
|
|
Fx2 = 1d0 - w2*(1d0 - w2)*(a2 + b2*(w2 - 0.5d0) + c2*(w2 - 0.5d0)**2)
|
|
|
|
|
2020-08-01 11:45:17 +02:00
|
|
|
! for two-weight ensembles
|
|
|
|
! Cx = alpha*Fx1*Fx2
|
|
|
|
|
|
|
|
! for left ensembles
|
|
|
|
! Cx = alpha*Fx1
|
|
|
|
|
|
|
|
! for right ensembles
|
|
|
|
Cx = alpha*Fx2
|
2020-07-02 14:27:38 +02:00
|
|
|
|
|
|
|
! Compute LDA exchange matrix in the AO basis
|
|
|
|
|
|
|
|
Ex = 0d0
|
|
|
|
do iG=1,nGrid
|
|
|
|
|
|
|
|
r = max(0d0,rhow(iG))
|
|
|
|
rI = max(0d0,rho(iG))
|
|
|
|
|
2020-07-08 10:55:03 +02:00
|
|
|
if(r > threshold) then
|
2020-07-02 14:27:38 +02:00
|
|
|
|
|
|
|
e_p = Cx*r**(1d0/3d0)
|
|
|
|
dedr = 1d0/3d0*Cx*r**(-2d0/3d0)
|
2020-07-08 10:55:03 +02:00
|
|
|
|
|
|
|
Ex = Ex - weight(iG)*dedr*r*r
|
|
|
|
|
|
|
|
if(rI > threshold) then
|
|
|
|
|
|
|
|
Ex = Ex + weight(iG)*(e_p*rI + dedr*r*rI)
|
|
|
|
|
|
|
|
endif
|
2020-07-02 14:27:38 +02:00
|
|
|
|
|
|
|
endif
|
|
|
|
|
|
|
|
enddo
|
|
|
|
|
|
|
|
end subroutine UCC_lda_exchange_individual_energy
|