mirror of
https://github.com/pfloos/quack
synced 2025-01-11 13:38:24 +01:00
188 lines
6.0 KiB
Fortran
188 lines
6.0 KiB
Fortran
|
subroutine RGT_Tmatrix(isp_T,nBas,nC,nO,nV,nR,nOOs,nVVs,nOOt,nVVt,lambda,ERI,Om1s,rho1s,Om2s,rho2s,Om1t,rho1t,Om2t,rho2t,T)
|
||
|
|
||
|
! Compute the T-matrix tensor elements
|
||
|
|
||
|
implicit none
|
||
|
include 'parameters.h'
|
||
|
|
||
|
! Input variables
|
||
|
|
||
|
integer,intent(in) :: nBas
|
||
|
integer,intent(in) :: nC
|
||
|
integer,intent(in) :: nO
|
||
|
integer,intent(in) :: nV
|
||
|
integer,intent(in) :: nR
|
||
|
integer,intent(in) :: nOOs, nOOt
|
||
|
integer,intent(in) :: nVVs, nVVt
|
||
|
integer,intent(in) :: isp_T
|
||
|
double precision,intent(in) :: lambda
|
||
|
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||
|
double precision,intent(in) :: Om1s(nVVs)
|
||
|
double precision,intent(in) :: rho1s(nBas,nBas,nVVs)
|
||
|
double precision,intent(in) :: Om2s(nOOs)
|
||
|
double precision,intent(in) :: rho2s(nBas,nBas,nOOs)
|
||
|
double precision,intent(in) :: Om1t(nVVt)
|
||
|
double precision,intent(in) :: rho1t(nBas,nBas,nVVt)
|
||
|
double precision,intent(in) :: Om2t(nOOt)
|
||
|
double precision,intent(in) :: rho2t(nBas,nBas,nOOt)
|
||
|
|
||
|
! Local variables
|
||
|
|
||
|
double precision,external :: Kronecker_delta
|
||
|
integer :: p,q,r,s
|
||
|
integer :: c,d,k,l
|
||
|
integer :: kl,cd
|
||
|
|
||
|
! Output variables
|
||
|
|
||
|
double precision,intent(out) :: T(nBas,nBas,nBas,nBas)
|
||
|
|
||
|
! Initialization
|
||
|
T(:,:,:,:) = 0d0
|
||
|
|
||
|
! This corresponds to the alpha alpha alpha alpha elements of T
|
||
|
if (isp_T == 1) then
|
||
|
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP SHARED(nC,nO,nBas,nR,T,ERI,rho1t,rho2t,Om1t,Om2t) &
|
||
|
!$OMP PRIVATE(p,q,r,s,c,d,cd,k,l,kl) &
|
||
|
!$OMP DEFAULT(NONE)
|
||
|
!$OMP DO
|
||
|
do s=nC+1,nBas-nR
|
||
|
do r=nC+1,nBas-nR
|
||
|
do q=nC+1,nBas-nR
|
||
|
do p=nC+1,nBas-nR
|
||
|
T(p,q,r,s) = ERI(p,q,r,s) - ERI(p,q,s,r)
|
||
|
|
||
|
cd = 0
|
||
|
do c = nO+1, nBas-nR
|
||
|
do d = c+1, nBas-nR
|
||
|
cd = cd + 1
|
||
|
T(p,q,r,s) = T(p,q,r,s) - rho1t(p,q,cd) * rho1t(r,s,cd) / Om1t(cd)
|
||
|
end do ! d
|
||
|
end do ! c
|
||
|
kl = 0
|
||
|
do k = nC+1, nO
|
||
|
do l = k+1, nO
|
||
|
kl = kl + 1
|
||
|
T(p,q,r,s) = T(p,q,r,s) + rho2t(p,q,kl) * rho2t(r,s,kl) / Om2t(kl)
|
||
|
enddo ! l
|
||
|
enddo ! k
|
||
|
|
||
|
enddo ! p
|
||
|
enddo ! q
|
||
|
enddo ! r
|
||
|
enddo ! s
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
endif
|
||
|
|
||
|
! This corresponds to the alpha beta alpha beta elements of T
|
||
|
if (isp_T == 2) then
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP SHARED(nC,nO,nBas,nR,T,ERI,rho1s,rho2s,Om1s,Om2s,rho1t,rho2t,Om1t,Om2t) &
|
||
|
!$OMP PRIVATE(p,q,r,s,c,d,cd,k,l,kl) &
|
||
|
!$OMP DEFAULT(NONE)
|
||
|
!$OMP DO
|
||
|
do s=nC+1,nBas-nR
|
||
|
do r=nC+1,nBas-nR
|
||
|
do q=nC+1,nBas-nR
|
||
|
do p=nC+1,nBas-nR
|
||
|
T(p,q,r,s) = ERI(p,q,r,s)
|
||
|
|
||
|
cd = 0
|
||
|
do c = nO+1, nBas-nR
|
||
|
do d = c, nBas-nR
|
||
|
cd = cd + 1
|
||
|
T(p,q,r,s) = T(p,q,r,s) - 0.5d0 * rho1s(p,q,cd) * rho1s(r,s,cd) / Om1s(cd)
|
||
|
end do ! d
|
||
|
end do ! c
|
||
|
|
||
|
cd = 0
|
||
|
do c = nO+1, nBas-nR
|
||
|
do d = c+1, nBas-nR
|
||
|
cd = cd + 1
|
||
|
T(p,q,r,s) = T(p,q,r,s) - 0.5d0 * rho1t(p,q,cd) * rho1t(r,s,cd) / Om1t(cd)
|
||
|
end do ! d
|
||
|
end do ! c
|
||
|
|
||
|
kl = 0
|
||
|
do k = nC+1, nO
|
||
|
do l = k, nO
|
||
|
kl = kl + 1
|
||
|
T(p,q,r,s) = T(p,q,r,s) + 0.5d0 * rho2s(p,q,kl) * rho2s(r,s,kl) / Om2s(kl)
|
||
|
enddo ! l
|
||
|
enddo ! k
|
||
|
|
||
|
kl = 0
|
||
|
do k = nC+1, nO
|
||
|
do l = k+1, nO
|
||
|
kl = kl + 1
|
||
|
T(p,q,r,s) = T(p,q,r,s) + 0.5d0 * rho2t(p,q,kl) * rho2t(r,s,kl) / Om2t(kl)
|
||
|
enddo ! l
|
||
|
enddo ! k
|
||
|
|
||
|
enddo ! p
|
||
|
enddo ! q
|
||
|
enddo ! r
|
||
|
enddo ! s
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
endif
|
||
|
|
||
|
! This corresponds to the beta alpha alpha beta elements of T
|
||
|
if (isp_T == 3) then
|
||
|
!$OMP PARALLEL &
|
||
|
!$OMP SHARED(nC,nO,nBas,nR,T,ERI,rho1s,rho2s,Om1s,Om2s,rho1t,rho2t,Om1t,Om2t) &
|
||
|
!$OMP PRIVATE(p,q,r,s,c,d,cd,k,l,kl) &
|
||
|
!$OMP DEFAULT(NONE)
|
||
|
!$OMP DO
|
||
|
do s=nC+1,nBas-nR
|
||
|
do r=nC+1,nBas-nR
|
||
|
do q=nC+1,nBas-nR
|
||
|
do p=nC+1,nBas-nR
|
||
|
T(p,q,r,s) = - ERI(p,q,s,r)
|
||
|
|
||
|
cd = 0
|
||
|
do c = nO+1, nBas-nR
|
||
|
do d = c+1, nBas-nR
|
||
|
cd = cd + 1
|
||
|
T(p,q,r,s) = T(p,q,r,s) + 0.5d0 * rho1t(p,q,cd) * rho1s(r,s,cd) / Om1t(cd)
|
||
|
end do ! d
|
||
|
end do ! c
|
||
|
cd = 0
|
||
|
do c = nO+1, nBas-nR
|
||
|
do d = c, nBas-nR
|
||
|
cd = cd + 1
|
||
|
T(p,q,r,s) = T(p,q,r,s) - (1d0 - Kronecker_delta(c,d)) * 0.5d0 * rho1s(p,q,cd) * rho1t(r,s,cd) / Om1s(cd)
|
||
|
end do ! d
|
||
|
end do ! c
|
||
|
|
||
|
kl = 0
|
||
|
do k = nC+1, nO
|
||
|
do l = k+1, nO
|
||
|
kl = kl + 1
|
||
|
T(p,q,r,s) = T(p,q,r,s) - 0.5d0 * rho2t(p,q,kl) * rho2s(r,s,kl) / Om2t(kl)
|
||
|
enddo ! l
|
||
|
enddo ! k
|
||
|
kl = 0
|
||
|
do k = nC+1, nO
|
||
|
do l = k, nO
|
||
|
kl = kl + 1
|
||
|
T(p,q,r,s) = T(p,q,r,s) + (1d0 - Kronecker_delta(k,l)) * 0.5d0 * rho2s(p,q,kl) * rho2t(r,s,kl) / Om2s(kl)
|
||
|
enddo ! l
|
||
|
enddo ! k
|
||
|
|
||
|
enddo ! p
|
||
|
enddo ! q
|
||
|
enddo ! r
|
||
|
enddo ! s
|
||
|
!$OMP END DO
|
||
|
!$OMP END PARALLEL
|
||
|
|
||
|
endif
|
||
|
|
||
|
end subroutine
|