4
1
mirror of https://github.com/pfloos/quack synced 2024-10-28 17:58:28 +01:00
quack/src/LR/ppLR_RPA_davidson.f90

500 lines
13 KiB
Fortran
Raw Normal View History

2024-09-10 10:13:50 +02:00
! ---
subroutine ppLR_RPA_HR_calc(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, n_states_diag, ERI, U, W)
implicit none
integer, intent(in) :: ispin
integer, intent(in) :: n_states_diag
integer, intent(in) :: nOO, nVV, nOrb, nC, nO, nR
double precision, intent(in) :: lambda, eF
double precision, intent(in) :: e(nOrb)
double precision, intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision, intent(in) :: U(nOO+nVV,n_states_diag)
double precision, intent(out) :: W(nOO+nVV,n_states_diag)
integer :: i, j, ij, k, l, kl
integer :: a, b, c, d, ab, cd
integer :: state
double precision :: mat_tmp
double precision :: diff_loc, diff_tot
double precision, allocatable :: M_ref(:,:), W_ref(:,:)
double precision, allocatable :: Cpp_ref(:,:), Dpp_ref(:,:), Bpp_ref(:,:)
double precision, external :: Kronecker_delta
if(ispin .eq. 1) then
ab = 0
do a = nO+1, nOrb-nR
do b = a, nOrb-nR
ab = ab + 1
do state = 1, n_states_diag
W(ab,state) = 0.d0
cd = 0
do c = nO+1, nOrb-nR
do d = c, nOrb-nR
cd = cd + 1
mat_tmp = (e(a) + e(b) - eF) * Kronecker_delta(a, c) * Kronecker_delta(b, d) &
+ lambda * (ERI(a,b,c,d) + ERI(a,b,d,c)) / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(c, d)))
W(ab,state) = W(ab,state) + mat_tmp * U(cd,state)
enddo
enddo
ij = nVV
do i = nC+1, nO
do j = i, nO
ij = ij + 1
mat_tmp = lambda * (ERI(a,b,i,j) + ERI(a,b,j,i)) / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(i, j)))
W(ab,state) = W(ab,state) - mat_tmp * U(ij,state)
enddo
enddo
enddo ! state
enddo ! b
enddo ! a
! ---
ij = nVV
do i = nC+1, nO
do j = i, nO
ij = ij + 1
do state = 1, n_states_diag
W(ij,state) = 0.d0
ab = 0
do a = nO+1, nOrb-nR
do b = a, nOrb-nR
ab = ab + 1
2024-09-10 10:13:50 +02:00
mat_tmp = lambda * (ERI(a,b,i,j) + ERI(a,b,j,i)) / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
2024-09-10 10:13:50 +02:00
* (1.d0 + Kronecker_delta(i, j)))
W(ij,state) = W(ij,state) + mat_tmp * U(ab,state)
2024-09-10 10:13:50 +02:00
enddo
enddo
kl = nVV
do k = nC+1, nO
do l = k, nO
kl = kl + 1
mat_tmp = - (e(i) + e(j) - eF) * Kronecker_delta(i, k) * Kronecker_delta(j, l) &
+ lambda * (ERI(i,j,k,l) + ERI(i,j,l,k)) / dsqrt( (1.d0 + Kronecker_delta(i, j)) &
* (1.d0 + Kronecker_delta(k, l)))
W(ij,state) = W(ij,state) - mat_tmp * U(kl,state)
enddo
enddo
enddo ! state
enddo ! j
enddo ! i
elseif((ispin .eq. 2) .or. (ispin .eq. 4)) then
ab = 0
do a = nO+1, nOrb-nR
do b = a+1, nOrb-nR
ab = ab + 1
do state = 1, n_states_diag
W(ab,state) = 0.d0
cd = 0
do c = nO+1, nOrb-nR
do d = c+1, nOrb-nR
cd = cd + 1
mat_tmp = (e(a) + e(b) - eF) * Kronecker_delta(a, c) * Kronecker_delta(b, d) &
+ lambda * (ERI(a,b,c,d) - ERI(a,b,d,c))
W(ab,state) = W(ab,state) + mat_tmp * U(cd,state)
enddo
enddo
ij = nVV
do i = nC+1, nO
do j = i+1, nO
ij = ij + 1
mat_tmp = lambda * (ERI(a,b,i,j) - ERI(a,b,j,i))
W(ab,state) = W(ab,state) - mat_tmp * U(ij,state)
enddo
enddo
enddo ! state
enddo ! b
enddo ! a
! ---
ij = nVV
do i = nC+1, nO
do j = i+1, nO
ij = ij + 1
do state = 1, n_states_diag
W(ij,state) = 0.d0
ab = 0
do a = nO+1, nOrb-nR
do b = a+1, nOrb-nR
ab = ab + 1
2024-09-10 10:13:50 +02:00
mat_tmp = lambda * (ERI(a,b,i,j) - ERI(a,b,j,i))
2024-09-10 10:13:50 +02:00
W(ij,state) = W(ij,state) + mat_tmp * U(ab,state)
2024-09-10 10:13:50 +02:00
enddo
enddo
kl = nVV
do k = nC+1, nO
do l = k+1, nO
kl = kl + 1
mat_tmp = - (e(i) + e(j) - eF) * Kronecker_delta(i, k) * Kronecker_delta(j, l) &
+ lambda * (ERI(i,j,k,l) - ERI(i,j,l,k))
W(ij,state) = W(ij,state) - mat_tmp * U(kl,state)
enddo
enddo
enddo ! state
enddo ! j
enddo ! i
elseif(ispin .eq. 3) then
ab = 0
do a = nO+1, nOrb-nR
do b = nO+1, nOrb-nR
ab = ab + 1
do state = 1, n_states_diag
W(ab,state) = 0.d0
cd = 0
do c = nO+1, nOrb-nR
do d = nO+1, nOrb-nR
cd = cd + 1
mat_tmp = (e(a) + e(b) - eF) * Kronecker_delta(a, c) * Kronecker_delta(b, d) &
+ lambda * ERI(a,b,c,d)
W(ab,state) = W(ab,state) + mat_tmp * U(cd,state)
enddo
enddo
ij = nVV
do i = nC+1, nO
do j = nC+1, nO
ij = ij + 1
mat_tmp = lambda * ERI(a,b,i,j)
W(ab,state) = W(ab,state) - mat_tmp * U(ij,state)
enddo
enddo
enddo ! state
enddo ! b
enddo ! a
! ---
ij = nVV
do i = nC+1, nO
do j = nC+1, nO
ij = ij + 1
do state = 1, n_states_diag
W(ij,state) = 0.d0
ab = 0
do a = nO+1, nOrb-nR
do b = nO+1, nOrb-nR
ab = ab + 1
2024-09-10 10:13:50 +02:00
mat_tmp = lambda * ERI(a,b,i,j)
2024-09-10 10:13:50 +02:00
W(ij,state) = W(ij,state) + mat_tmp * U(ab,state)
2024-09-10 10:13:50 +02:00
enddo
enddo
kl = nVV
do k = nC+1, nO
do l = nC+1, nO
kl = kl + 1
mat_tmp = - (e(i) + e(j) - eF) * Kronecker_delta(i, k) * Kronecker_delta(j, l) &
+ lambda * ERI(i,j,k,l)
W(ij,state) = W(ij,state) - mat_tmp * U(kl,state)
enddo
enddo
enddo ! state
enddo ! j
enddo ! i
else
print*, ' Error in ppLR_RPA_HR_calc'
2024-09-10 10:13:50 +02:00
print*, ' ispin is not supported'
print*, ' ispin = ', ispin
stop
endif
! print*, ' debug ppLR_HR_calc:'
! print*, ispin, nOO, nVV
! allocate(M_ref(nOO+nVV,nOO+nVV))
! allocate(Bpp_ref(nVV,nOO), Cpp_ref(nVV,nVV), Dpp_ref(nOO,nOO))
! allocate(W_ref(nOO+nVV,n_states_diag))
!
! call ppLR_C(ispin, nOrb, nC, nO, nOrb-nO, nR, nVV, 1d0, e, ERI, Cpp_ref)
! call ppLR_D(ispin, nOrb, nC, nO, nOrb-nO, nR, nOO, 1d0, e, ERI, Dpp_ref)
! call ppLR_B(ispin, nOrb, nC, nO, nOrb-nO, nR, nOO, nVV, 1d0, ERI, Bpp_ref)
! M_ref = 0.d0
! M_ref( 1:nVV , 1:nVV) = + Cpp_ref(1:nVV,1:nVV)
! M_ref(nVV+1:nVV+nOO,nVV+1:nVV+nOO) = - Dpp_ref(1:nOO,1:nOO)
! M_ref( 1:nVV ,nVV+1:nOO+nVV) = - Bpp_ref(1:nVV,1:nOO)
! M_ref(nVV+1:nOO+nVV, 1:nVV) = + transpose(Bpp_ref(1:nVV,1:nOO))
!
! call dgemm('N', 'N', nOO+nVV, n_states_diag, nOO+nVV, 1.d0, &
! M_ref(1,1), size(M_ref, 1), U(1,1), size(U, 1), &
! 0.d0, W_ref(1,1), size(W_ref, 1))
!
! diff_tot = 0.d0
! do state = 1, n_states_diag
! do ab = 1, nOO
! diff_loc = dabs(W(ab,state) - W_ref(ab,state))
! if(diff_loc .gt. 1d-12) then
! print*, ' important diff on:', ab, state
! print*, W(ab,state), W_ref(ab,state)
! stop
! endif
! diff_tot = diff_tot + diff_loc
! enddo
! do ij = nVV+1, nVV+nOO
! diff_loc = dabs(W(ij,state) - W_ref(ij,state))
! if(diff_loc .gt. 1d-12) then
! print*, ' important diff on:', ij, state
! print*, W(ij,state), W_ref(ij,state)
! stop
! endif
! diff_tot = diff_tot + diff_loc
! enddo
! enddo
! print*, 'diff_tot = ', diff_tot
!
! deallocate(M_ref)
! deallocate(Bpp_ref, Cpp_ref, Dpp_ref)
! deallocate(W_ref)
return
end
! ---
subroutine ppLR_RPA_H_diag(ispin, nOrb, nC, nO, nR, nOO, nVV, lambda, e, eF, ERI, H_diag)
implicit none
integer, intent(in) :: ispin
integer, intent(in) :: nOO, nVV, nOrb, nC, nO, nR
double precision, intent(in) :: lambda, eF
double precision, intent(in) :: e(nOrb)
double precision, intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
double precision, intent(out) :: H_diag(nOO+nVV)
integer :: i, j, ij, k, l, kl
integer :: a, b, c, d, ab, cd
double precision :: diff_loc, diff_tot
double precision, allocatable :: M_ref(:,:)
double precision, allocatable :: Cpp_ref(:,:), Dpp_ref(:,:), Bpp_ref(:,:)
double precision, external :: Kronecker_delta
if(ispin .eq. 1) then
ab = 0
do a = nO+1, nOrb-nR
do b = a, nOrb-nR
ab = ab + 1
cd = 0
do c = nO+1, nOrb-nR
do d = c, nOrb-nR
cd = cd + 1
if(a .ne. c) cycle
if(b .ne. d) cycle
H_diag(ab) = e(a) + e(b) - eF &
+ lambda * (ERI(a,b,c,d) + ERI(a,b,d,c)) / dsqrt( (1.d0 + Kronecker_delta(a, b)) &
* (1.d0 + Kronecker_delta(c, d)))
enddo
enddo
enddo ! b
enddo ! a
ij = nVV
do i = nC+1, nO
do j = i, nO
ij = ij + 1
kl = 0
do k = nC+1, nO
do l = k, nO
kl = kl + 1
if(i .ne. k) cycle
if(j .ne. l) cycle
H_diag(ij) = e(i) + e(j) - eF &
- lambda * (ERI(i,j,k,l) + ERI(i,j,l,k)) / dsqrt( (1.d0 + Kronecker_delta(i, j)) &
* (1.d0 + Kronecker_delta(k, l)))
enddo
enddo
enddo ! j
enddo ! i
elseif((ispin .eq. 2) .or. (ispin .eq. 4)) then
ab = 0
do a = nO+1, nOrb-nR
do b = a+1, nOrb-nR
ab = ab + 1
cd = 0
do c = nO+1, nOrb-nR
do d = c+1, nOrb-nR
cd = cd + 1
if(a .ne. c) cycle
if(b .ne. d) cycle
H_diag(ab) = e(a) + e(b) - eF + lambda * (ERI(a,b,c,d) - ERI(a,b,d,c))
enddo
enddo
enddo ! b
enddo ! a
ij = nVV
do i = nC+1, nO
do j = i+1, nO
ij = ij + 1
kl = 0
do k = nC+1, nO
do l = k+1, nO
kl = kl + 1
if(i .ne. k) cycle
if(j .ne. l) cycle
H_diag(ij) = e(i) + e(j) - eF - lambda * (ERI(i,j,k,l) - ERI(i,j,l,k))
enddo
enddo
enddo ! j
enddo ! i
elseif(ispin .eq. 3) then
ab = 0
do a = nO+1, nOrb-nR
do b = nO+1, nOrb-nR
ab = ab + 1
cd = 0
do c = nO+1, nOrb-nR
do d = nO+1, nOrb-nR
cd = cd + 1
if(a .ne. c) cycle
if(b .ne. d) cycle
H_diag(ab) = (e(a) + e(b) - eF) + lambda * ERI(a,b,c,d)
enddo
enddo
enddo ! b
enddo ! a
ij = nVV
do i = nC+1, nO
do j = nC+1, nO
ij = ij + 1
kl = 0
do k = nC+1, nO
do l = nC+1, nO
kl = kl + 1
if(i .ne. k) cycle
if(j .ne. l) cycle
H_diag(ij) = (e(i) + e(j) - eF) - lambda * ERI(i,j,k,l)
enddo
enddo
enddo ! j
enddo ! i
else
print*, ' Error in ppLR_RPA_H_diag'
2024-09-10 10:13:50 +02:00
print*, ' ispin is not supported'
print*, ' ispin = ', ispin
stop
endif
! print*, ' debug ppLR_H_diag:'
! print*, ispin, nOO, nVV
! allocate(M_ref(nOO+nVV,nOO+nVV))
! allocate(Bpp_ref(nVV,nOO), Cpp_ref(nVV,nVV), Dpp_ref(nOO,nOO))
!
! call ppLR_C(ispin, nOrb, nC, nO, nOrb-nO, nR, nVV, 1d0, e, ERI, Cpp_ref)
! call ppLR_D(ispin, nOrb, nC, nO, nOrb-nO, nR, nOO, 1d0, e, ERI, Dpp_ref)
! call ppLR_B(ispin, nOrb, nC, nO, nOrb-nO, nR, nOO, nVV, 1d0, ERI, Bpp_ref)
! M_ref = 0.d0
! M_ref( 1:nVV , 1:nVV) = + Cpp_ref(1:nVV,1:nVV)
! M_ref(nVV+1:nVV+nOO,nVV+1:nVV+nOO) = - Dpp_ref(1:nOO,1:nOO)
! M_ref( 1:nVV ,nVV+1:nOO+nVV) = - Bpp_ref(1:nVV,1:nOO)
! M_ref(nVV+1:nOO+nVV, 1:nVV) = + transpose(Bpp_ref(1:nVV,1:nOO))
!
! diff_tot = 0.d0
! do ab = 1, nOO
! diff_loc = dabs(H_diag(ab) - M_ref(ab,ab))
! if(diff_loc .gt. 1d-12) then
! print*, ' important diff on:', ab
! print*, H_diag(ab), M_ref(ab,ab)
! stop
! endif
! diff_tot = diff_tot + diff_loc
! enddo
! do ij = nVV+1, nVV+nOO
! diff_loc = dabs(H_diag(ij) - M_ref(ij,ij))
! if(diff_loc .gt. 1d-12) then
! print*, ' important diff on:', ij
! print*, H_diag(ij), M_ref(ij,ij)
! stop
! endif
! diff_tot = diff_tot + diff_loc
! enddo
! print*, 'diff_tot = ', diff_tot
!
! deallocate(M_ref)
! deallocate(Bpp_ref, Cpp_ref, Dpp_ref)
return
end
! ---