4
1
mirror of https://github.com/pfloos/quack synced 2025-01-10 21:18:33 +01:00
quack/src/GT/GTpp_self_energy_diag.f90

133 lines
3.3 KiB
Fortran
Raw Normal View History

2023-07-27 19:17:20 +02:00
subroutine GTpp_self_energy_diag(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,nOOt,nVVt,e,Om1s,rho1s,Om2s,rho2s,Om1t,rho1t,Om2t,rho2t, &
EcGM,Sig,Z)
2019-10-06 22:35:36 +02:00
! Compute diagonal of the correlation part of the T-matrix self-energy
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
2023-07-27 19:17:20 +02:00
integer,intent(in) :: nOOs,nOOt
integer,intent(in) :: nVVs,nVVt
2019-10-06 22:35:36 +02:00
double precision,intent(in) :: e(nBas)
2023-07-27 19:17:20 +02:00
double precision,intent(in) :: Om1s(nVVs),Om1t(nVVt)
double precision,intent(in) :: rho1s(nBas,nBas,nVVs),rho1t(nBas,nBas,nVVt)
double precision,intent(in) :: Om2s(nOOs),Om2t(nOOt)
double precision,intent(in) :: rho2s(nBas,nBas,nOOs),rho2t(nBas,nBas,nOOt)
2019-10-06 22:35:36 +02:00
! Local variables
2022-01-06 13:48:15 +01:00
integer :: i,j,a,b,p,cd,kl
2023-07-12 14:13:45 +02:00
double precision :: num,eps
2019-10-06 22:35:36 +02:00
! Output variables
2022-01-06 13:48:15 +01:00
double precision,intent(inout) :: EcGM
2023-07-12 14:13:45 +02:00
double precision,intent(inout) :: Sig(nBas)
double precision,intent(inout) :: Z(nBas)
2019-10-06 22:35:36 +02:00
2023-07-27 19:17:20 +02:00
! Initialization
Sig(:) = 0d0
Z(:) = 0d0
EcGM = 0d0
!--------------------------------------!
! Occupied part of the Tpp self-energy !
!--------------------------------------!
2019-10-06 22:35:36 +02:00
do p=nC+1,nBas-nR
do i=nC+1,nO
2023-07-12 14:13:45 +02:00
2023-07-27 19:17:20 +02:00
do cd=1,nVVs
eps = e(p) + e(i) - Om1s(cd)
num = rho1s(p,i,cd)**2
2023-07-12 14:13:45 +02:00
Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2)
Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
2023-07-27 19:17:20 +02:00
enddo
2023-07-12 14:13:45 +02:00
2023-07-27 19:17:20 +02:00
do cd=1,nVVt
eps = e(p) + e(i) - Om1t(cd)
num = rho1t(p,i,cd)**2
Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2)
Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
2019-10-06 22:35:36 +02:00
enddo
2023-07-31 14:47:09 +02:00
2019-10-06 22:35:36 +02:00
enddo
enddo
2021-10-16 18:51:53 +02:00
!----------------------------------------------
! Virtual part of the T-matrix self-energy
!----------------------------------------------
2019-10-06 22:35:36 +02:00
do p=nC+1,nBas-nR
2021-10-17 23:04:22 +02:00
do a=nO+1,nBas-nR
2023-07-12 14:13:45 +02:00
2023-07-27 19:17:20 +02:00
do kl=1,nOOs
eps = e(p) + e(a) - Om2s(kl)
num = rho2s(p,a,kl)**2
2023-07-12 14:13:45 +02:00
Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2)
Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
2023-07-27 19:17:20 +02:00
enddo
2023-07-12 14:13:45 +02:00
2023-07-27 19:17:20 +02:00
do kl=1,nOOt
eps = e(p) + e(a) - Om2t(kl)
num = rho2t(p,a,kl)**2
Sig(p) = Sig(p) + num*eps/(eps**2 + eta**2)
Z(p) = Z(p) - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
2019-10-06 22:35:36 +02:00
enddo
2023-07-27 19:17:20 +02:00
2019-10-06 22:35:36 +02:00
enddo
enddo
2022-01-06 13:48:15 +01:00
!----------------------------------------------
! Galitskii-Migdal correlation energy
!----------------------------------------------
do i=nC+1,nO
do j=nC+1,nO
2023-07-12 14:13:45 +02:00
2023-07-27 19:17:20 +02:00
do cd=1,nVVs
eps = e(i) + e(j) - Om1s(cd)
num = rho1s(i,j,cd)**2
2023-07-12 14:13:45 +02:00
EcGM = EcGM + num*eps/(eps**2 + eta**2)
2023-07-27 19:17:20 +02:00
enddo
2023-07-12 14:13:45 +02:00
2023-07-27 19:17:20 +02:00
do cd=1,nVVt
eps = e(i) + e(j) - Om1t(cd)
num = rho1t(i,j,cd)**2
EcGM = EcGM + num*eps/(eps**2 + eta**2)
2022-01-06 13:48:15 +01:00
enddo
2023-07-27 19:17:20 +02:00
2022-01-06 13:48:15 +01:00
enddo
enddo
do a=nO+1,nBas-nR
do b=nO+1,nBas-nR
2023-07-12 14:13:45 +02:00
2023-07-27 19:17:20 +02:00
do kl=1,nOOs
eps = e(a) + e(b) - Om2s(kl)
num = rho2s(a,b,kl)**2
2023-07-12 14:13:45 +02:00
EcGM = EcGM - num*eps/(eps**2 + eta**2)
2023-07-27 19:17:20 +02:00
enddo
2023-07-12 14:13:45 +02:00
2023-07-27 19:17:20 +02:00
do kl=1,nOOt
eps = e(a) + e(b) - Om2t(kl)
num = rho2t(a,b,kl)**2
EcGM = EcGM - num*eps/(eps**2 + eta**2)
2022-01-06 13:48:15 +01:00
enddo
2023-07-27 19:17:20 +02:00
2022-01-06 13:48:15 +01:00
enddo
enddo
2023-07-27 19:17:20 +02:00
Z(:) = 1d0/(1d0 - Z(:))
2023-07-04 10:32:47 +02:00
end subroutine