mirror of
https://github.com/pfloos/quack
synced 2024-11-06 22:24:03 +01:00
113 lines
2.6 KiB
Fortran
113 lines
2.6 KiB
Fortran
|
subroutine renormalization_factor(SOSEX,nBas,nC,nO,nV,nR,nS,e,Omega,rho,rhox,Z)
|
||
|
|
||
|
! Compute renormalization factor for GW
|
||
|
|
||
|
implicit none
|
||
|
include 'parameters.h'
|
||
|
|
||
|
! Input variables
|
||
|
|
||
|
logical,intent(in) :: SOSEX
|
||
|
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
|
||
|
double precision,intent(in) :: e(nBas),Omega(nS),rho(nBas,nBas,nS),rhox(nBas,nBas,nS)
|
||
|
|
||
|
! Local variables
|
||
|
|
||
|
integer :: i,j,a,b,x,jb
|
||
|
double precision :: eps
|
||
|
double precision,allocatable :: SigC(:),dSigC(:),d2SigC(:)
|
||
|
double precision,external :: Z_dcgw
|
||
|
|
||
|
! Output variables
|
||
|
|
||
|
double precision,intent(out) :: Z(nBas)
|
||
|
|
||
|
! Allocate
|
||
|
|
||
|
allocate(SigC(nBas),dSigC(nBas),d2SigC(nBas))
|
||
|
|
||
|
SigC(:) = 0d0
|
||
|
dSigC(:) = 0d0
|
||
|
d2SigC(:) = 0d0
|
||
|
|
||
|
! Occupied part of the correlation self-energy
|
||
|
|
||
|
do x=nC+1,nBas-nR
|
||
|
do i=nC+1,nO
|
||
|
jb = 0
|
||
|
do j=nC+1,nO
|
||
|
do b=nO+1,nBas-nR
|
||
|
jb = jb + 1
|
||
|
eps = e(x) - e(i) + Omega(jb)
|
||
|
! Z(x) = Z(x) + 2d0*Z_dcgw(eps,rho(x,i,jb))
|
||
|
! SigC(x) = SigC(x) + 2d0*rho(x,i,jb)**2/eps
|
||
|
dSigC(x) = dSigC(x) - 2d0*rho(x,i,jb)**2/eps**2
|
||
|
! d2SigC(x) = d2SigC(x) + 4d0*rho(x,i,jb)**2/eps**3
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
! Virtual part of the correlation self-energy
|
||
|
|
||
|
do x=nC+1,nBas-nR
|
||
|
do a=nO+1,nBas-nR
|
||
|
jb = 0
|
||
|
do j=nC+1,nO
|
||
|
do b=nO+1,nBas-nR
|
||
|
jb = jb + 1
|
||
|
eps = e(x) - e(a) - Omega(jb)
|
||
|
! Z(x) = Z(x) + 2d0*Z_dcgw(eps,rho(x,a,jb))
|
||
|
! SigC(x) = SigC(x) + 2d0*rho(x,a,jb)**2/eps
|
||
|
dSigC(x) = dSigC(x) - 2d0*rho(x,a,jb)**2/eps**2
|
||
|
! d2SigC(x) = d2SigC(x) + 4d0*rho(x,a,jb)**2/eps**3
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
! SOSEX correction
|
||
|
|
||
|
if(SOSEX) then
|
||
|
|
||
|
! Occupied part of the correlation self-energy
|
||
|
|
||
|
do x=nC+1,nBas-nR
|
||
|
do i=nC+1,nO
|
||
|
jb = 0
|
||
|
do j=nC+1,nO
|
||
|
do b=nO+1,nBas-nR
|
||
|
jb = jb + 1
|
||
|
eps = e(x) - e(i) + Omega(jb)
|
||
|
dSigC(x) = dSigC(x) - (rho(x,i,jb)/eps)*(rhox(x,i,jb)/eps)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
! Virtual part of the correlation self-energy
|
||
|
|
||
|
do x=nC+1,nBas-nR
|
||
|
do a=nO+1,nBas-nR
|
||
|
jb = 0
|
||
|
do j=nC+1,nO
|
||
|
do b=nO+1,nBas-nR
|
||
|
jb = jb + 1
|
||
|
eps = e(x) - e(a) - Omega(jb)
|
||
|
dSigC(x) = dSigC(x) - (rho(x,a,jb)/eps)*(rhox(x,a,jb)/eps)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
endif
|
||
|
|
||
|
! Compute renormalization factor from derivative of SigC
|
||
|
|
||
|
Z(:) = 1d0/(1d0-dSigC(:))
|
||
|
|
||
|
! Z(:) = 1d0 - dSigC(:) + sqrt( (1d0 - dSigC(:))**2 - 2d0*SigC(:)*d2SigC(:) )
|
||
|
! Z(:) = Z(:)/(SigC(:)*d2SigC(:))
|
||
|
|
||
|
end subroutine renormalization_factor
|