4
1
mirror of https://github.com/pfloos/quack synced 2024-11-07 06:33:55 +01:00
quack/src/IntPak/FormVRR3e.f90

175 lines
3.7 KiB
Fortran
Raw Normal View History

2019-02-07 22:49:12 +01:00
subroutine FormVRR3e(ExpZ,ExpG,CenterZ,DY0,DY1,D2Y0,D2Y1,delta0,delta1,Y0,Y1)
! Form stuff we need...
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: ExpZ(3),ExpG(3,3)
double precision,intent(in) :: CenterZ(3,3)
! Local variables
integer :: i,j,k,l
double precision :: ZetaMat(3,3)
double precision :: CMat(3,3),GMat(3,3)
double precision :: Delta0Mat(3,3),Delta1Mat(3,3)
double precision :: InvDelta0Mat(3,3),InvDelta1Mat(3,3)
double precision :: CenterY(3,3,3)
double precision :: YMat(3,3),Y2Mat(3,3)
double precision :: DYMat(3,3,3),D2YMat(3,3,3,3)
double precision :: D0Mat(3,3),D1Mat(3,3)
double precision :: KappaCross
! Output variables
double precision,intent(out) :: DY0(3),DY1(3),D2Y0(3,3),D2Y1(3,3)
double precision,intent(out) :: delta0,delta1,Y0,Y1
! Initalize arrays
ZetaMat = 0d0
CMat = 0d0
GMat = 0d0
YMat = 0d0
Y2Mat = 0d0
D0Mat = 0d0
D1Mat = 0d0
! Form the zeta matrix Eq. (15a)
do i=1,3
ZetaMat(i,i) = ExpZ(i)
2019-03-20 13:38:42 +01:00
end do
2019-02-07 22:49:12 +01:00
! print*,'Zeta'
! call matout(3,3,ZetaMat)
! Form the C matrix Eq. (15a)
CMat(1,1) = 1d0
CMat(2,2) = 1d0
CMat(1,2) = -1d0
CMat(2,1) = -1d0
! print*,'C'
! call matout(3,3,CMat)
! Form the G matrix Eq. (15b)
do i=1,3
do j=1,i-1
GMat(i,j) = - ExpG(j,i)
2019-03-20 13:38:42 +01:00
end do
2019-02-07 22:49:12 +01:00
do j=i+1,3
GMat(i,j) = - ExpG(i,j)
2019-03-20 13:38:42 +01:00
end do
end do
2019-02-07 22:49:12 +01:00
do i=1,3
do j=1,i-1
GMat(i,i) = GMat(i,i) + ExpG(j,i)
2019-03-20 13:38:42 +01:00
end do
2019-02-07 22:49:12 +01:00
do j=i+1,3
GMat(i,i) = GMat(i,i) + ExpG(i,j)
2019-03-20 13:38:42 +01:00
end do
end do
2019-02-07 22:49:12 +01:00
! print*,'G'
! call matout(3,3,GMat)
! Form the Y and Y^2 matrices Eq. (16b)
do i=1,3
do j=i+1,3
do k=1,3
CenterY(i,j,k) = CenterZ(i,k) - CenterZ(j,k)
Y2Mat(i,j) = Y2Mat(i,j) + CenterY(i,j,k)**2
2019-03-20 13:38:42 +01:00
end do
2019-02-07 22:49:12 +01:00
YMat(i,j) = sqrt(Y2Mat(i,j))
2019-03-20 13:38:42 +01:00
end do
end do
2019-02-07 22:49:12 +01:00
! print*,'Y'
! call matout(3,3,YMat)
! print*,'Y2'
! call matout(3,3,Y2Mat)
! Form the delta0 and delta1 matrices Eq. (14)
do i=1,3
do j=1,3
Delta0Mat(i,j) = ZetaMat(i,j) + GMat(i,j)
Delta1Mat(i,j) = Delta0Mat(i,j) + CMat(i,j)
2019-03-20 13:38:42 +01:00
end do
end do
2019-02-07 22:49:12 +01:00
! Form the DY and D2Y matrices
do i=1,3
do j=1,3
do k=1,3
DYMat(i,j,k) = KappaCross(i,j,k)*YMat(j,k)/ExpZ(i)
do l=1,3
D2YMat(i,j,k,l) = 0.5d0*KappaCross(i,k,l)*KappaCross(j,k,l)/(ExpZ(i)*ExpZ(j))
2019-03-20 13:38:42 +01:00
end do
end do
end do
end do
2019-02-07 22:49:12 +01:00
! Compute the inverse of the Delta0 and Delta1 matrices
! InvDelta0Mat = Delta0Mat
! InvDelta1Mat = Delta1Mat
do i=1,3
do j=1,3
InvDelta0Mat(i,j) = Delta0Mat(i,j)
InvDelta1Mat(i,j) = Delta1Mat(i,j)
2019-03-20 13:38:42 +01:00
end do
end do
2019-02-07 22:49:12 +01:00
! call amove(3,3,Delta0Mat,InvDelta0Mat)
! call amove(3,3,Delta1Mat,InvDelta1Mat)
call CalcInv3(InvDelta0Mat,delta0)
call CalcInv3(InvDelta1Mat,delta1)
! call matout(3,3,InvDelta0Mat)
! call matout(3,3,InvDelta1Mat)
! print*, 'delta0,delta1 = ',delta0,delta1
! Form the Delta matrix Eq. (16a)
do i=1,3
do j=1,3
do k=1,3
do l=1,3
D0Mat(i,j) = D0Mat(i,k) + ZetaMat(i,k)*InvDelta0Mat(k,l)*ZetaMat(l,j)
D1Mat(i,j) = D1Mat(i,k) + ZetaMat(i,k)*InvDelta1Mat(k,l)*ZetaMat(l,j)
2019-03-20 13:38:42 +01:00
end do
end do
end do
end do
2019-02-07 22:49:12 +01:00
! Form the derivative matrices
do i=1,3
call CalcTrAB(3,D0Mat,D2YMat,DY0(i))
call CalcTrAB(3,D1Mat,D2YMat,DY1(i))
do j=1,3
call CalcTrAB(3,D0Mat,D2YMat,D2Y0(i,j))
call CalcTrAB(3,D1Mat,D2YMat,D2Y1(i,j))
2019-03-20 13:38:42 +01:00
end do
end do
2019-02-07 22:49:12 +01:00
! Compute Y0 and Y1
call CalcTrAB(3,D0Mat,Y2Mat,Y0)
call CalcTrAB(3,D1Mat,Y2Mat,Y1)
end subroutine FormVRR3e