mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-11 12:38:09 +01:00
267 lines
6.7 KiB
Fortran
267 lines
6.7 KiB
Fortran
BEGIN_PROVIDER [ double precision, ao_extra_center]
|
|
implicit none
|
|
ao_extra_center = 0.01d0
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ integer, n_func_tot]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! n_func_tot :: total number of functions in the fitted basis set
|
|
!
|
|
! returned in an uncontracted way
|
|
END_DOC
|
|
integer :: i,prefact
|
|
n_func_tot = 0
|
|
print*,'n_func_tot '
|
|
do i = 1, ao_num
|
|
if(ao_l(i) == 0)then
|
|
prefact = 1 ! s functions
|
|
else
|
|
! p functions are fitted with 2 functions
|
|
! d functions are fitted with 4 functions etc ...
|
|
prefact=2*ao_l(i)
|
|
endif
|
|
n_func_tot += prefact * ao_prim_num(i)
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ integer, n_prim_tot_orig]
|
|
implicit none
|
|
integer :: i
|
|
n_prim_tot_orig = 0
|
|
do i = 1, ao_num
|
|
n_prim_tot_orig += ao_prim_num(i)
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ logical, lmax_too_big]
|
|
implicit none
|
|
if (ao_l_max.gt.1)then
|
|
lmax_too_big = .True.
|
|
else
|
|
lmax_too_big = .False.
|
|
endif
|
|
if(lmax_too_big)then
|
|
print*,'STOPPING !! lmax is larger than 1 !'
|
|
print*,'Cannot yet fit with 1s functions ...'
|
|
stop
|
|
endif
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ integer, n_2p_func_orig]
|
|
&BEGIN_PROVIDER [ integer, n_2p_func_tot]
|
|
implicit none
|
|
integer :: i
|
|
BEGIN_DOC
|
|
! n_2p_func_orig :: number of 2p functions in the original basis
|
|
!
|
|
! n_2p_func_tot :: total number of p functions in the fitted basis
|
|
END_DOC
|
|
n_2p_func_orig= 0
|
|
n_2p_func_tot = 0
|
|
do i = 1, ao_num
|
|
if(ao_l(i)==1)then
|
|
n_2p_func_orig+= 1
|
|
n_2p_func_tot += ao_prim_num(i) * 2
|
|
endif
|
|
enddo
|
|
print*,'n_2p_func_tot = ',n_2p_func_tot
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ integer, list_2p_functions, (n_2p_func_orig)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! list of 2p functions in the original basis
|
|
END_DOC
|
|
integer :: i,j
|
|
j=0
|
|
do i = 1, ao_num
|
|
if(ao_l(i)==1)then
|
|
j+=1
|
|
list_2p_functions(j) = i
|
|
endif
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ integer, extra_fictious_nucl]
|
|
implicit none
|
|
extra_fictious_nucl = n_2p_func_tot
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ integer, new_nucl_num]
|
|
implicit none
|
|
new_nucl_num = nucl_num + n_2p_func_tot
|
|
print*,'new_nucl_num = ',new_nucl_num
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ character*(32), new_nucl_label_1s , (new_nucl_num) ]
|
|
&BEGIN_PROVIDER [ integer, list_real_nucl, (nucl_num) ]
|
|
&BEGIN_PROVIDER [ integer, list_fict_nucl, (extra_fictious_nucl) ]
|
|
implicit none
|
|
integer :: i,j
|
|
do i = 1, nucl_num
|
|
new_nucl_label_1s(i) = nucl_label(i)
|
|
list_real_nucl(i) = i
|
|
enddo
|
|
j=0
|
|
do i = nucl_num+1,new_nucl_num
|
|
j+=1
|
|
new_nucl_label_1s(i) = "X"
|
|
list_fict_nucl(j) = i
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, new_nucl_coord_1s, (new_nucl_num,3)]
|
|
implicit none
|
|
integer :: i,j
|
|
do i = 1, new_nucl_num
|
|
new_nucl_coord_1s(i,1:3) = new_nucl_coord_1s_transp(1:3,i)
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, new_nucl_coord_1s_transp, (3,new_nucl_num)]
|
|
&BEGIN_PROVIDER [ double precision, new_nucl_charge_1s, (new_nucl_num)]
|
|
&BEGIN_PROVIDER [ integer, extra_nucl_real_fictious_list_prov, (extra_fictious_nucl)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! the real atoms are located in the first nucl_num entries
|
|
!
|
|
! then the fictious atoms are located after
|
|
END_DOC
|
|
integer :: i,ii,j,i_ao,k,n_ao
|
|
integer :: return_xyz_int,power(3),good_i
|
|
new_nucl_charge_1s = 0.d0
|
|
do i = 1, nucl_num
|
|
new_nucl_coord_1s_transp(1:3,i) = nucl_coord_transp(1:3,i)
|
|
new_nucl_charge_1s(i) = nucl_charge(i)
|
|
enddo
|
|
k = nucl_num
|
|
do i = 1, nucl_num
|
|
do ii = 1, Nucl_N_Aos(i)
|
|
i_ao = nucl_aos_transposed(ii,i)
|
|
if(ao_l(i_ao)==1)then
|
|
! split the function into 2 s functions
|
|
! one is centered in R_x + d
|
|
power(1:3) = ao_power(i_ao,1:3)
|
|
good_i = return_xyz_int(power)
|
|
do j = 1, ao_prim_num(i_ao)
|
|
k+=1
|
|
new_nucl_coord_1s_transp(1:3,k)= nucl_coord_transp(1:3,i)
|
|
new_nucl_coord_1s_transp(good_i,k)+= ao_extra_center
|
|
new_nucl_charge_1s(k) = 0.d0
|
|
extra_nucl_real_fictious_list_prov(k-nucl_num)=i
|
|
k+=1
|
|
! one is centered in R_x - d
|
|
new_nucl_coord_1s_transp(1:3,k)= nucl_coord_transp(1:3,i)
|
|
new_nucl_coord_1s_transp(good_i,k)-= ao_extra_center
|
|
new_nucl_charge_1s(k) = 0.d0
|
|
extra_nucl_real_fictious_list_prov(k-nucl_num)=i
|
|
enddo
|
|
else if(ao_l(i_ao).gt.1)then
|
|
print*,'WARNING ! Lmax value not implemented yet !'
|
|
print*,'stopping ...'
|
|
stop
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ integer, new_n_AOs_max]
|
|
implicit none
|
|
new_n_AOs_max = ao_prim_num_max * n_AOs_max
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ integer, new_Nucl_N_Aos, (new_nucl_num)]
|
|
&BEGIN_PROVIDER [ integer, new_nucl_aos_transposed, (new_n_AOs_max,new_nucl_num) ]
|
|
&BEGIN_PROVIDER [ double precision, new_ao_expo_1s , (n_func_tot) ]
|
|
&BEGIN_PROVIDER [ integer, new_ao_nucl_1s, (n_func_tot)]
|
|
implicit none
|
|
integer :: i,j,ii,i_ao,n_func,n_func_total,n_nucl
|
|
double precision :: coef
|
|
n_func_total = 0
|
|
do i = 1, nucl_num
|
|
n_func = 0
|
|
do ii = 1, Nucl_N_Aos(i)
|
|
i_ao = nucl_aos_transposed(ii,i)
|
|
if(ao_l(i_ao)==0)then
|
|
do j = 1, ao_prim_num(i_ao)
|
|
coef= ao_expo(i_ao,j)
|
|
n_func_total += 1
|
|
n_func +=1
|
|
new_nucl_aos_transposed(n_func,i) = n_func_total
|
|
new_ao_expo_1s(n_func_total) = coef
|
|
new_ao_nucl_1s(n_func_total) = i
|
|
enddo
|
|
endif
|
|
enddo
|
|
new_Nucl_N_Aos(i) = n_func
|
|
enddo
|
|
n_nucl=nucl_num
|
|
do i = 1, nucl_num
|
|
do ii = 1, Nucl_N_Aos(i)
|
|
i_ao = nucl_aos_transposed(ii,i)
|
|
if(ao_l(i_ao)==1)then
|
|
do j = 1, ao_prim_num(i_ao)
|
|
coef= ao_expo(i_ao,j)
|
|
n_func_total+=1
|
|
n_nucl +=1
|
|
new_nucl_aos_transposed(1,n_nucl) = n_func_total
|
|
new_ao_expo_1s(n_func_total) = coef
|
|
new_Nucl_N_Aos(n_nucl)=1
|
|
new_ao_nucl_1s(n_func_total) = n_nucl
|
|
|
|
n_func_total+=1
|
|
n_nucl +=1
|
|
new_nucl_aos_transposed(1,n_nucl) = n_func_total
|
|
new_ao_expo_1s(n_func_total) = coef
|
|
new_Nucl_N_Aos(n_nucl)=1
|
|
new_ao_nucl_1s(n_func_total) = n_nucl
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, new_ao_coef_1s , (n_func_tot) ]
|
|
implicit none
|
|
integer :: i
|
|
BEGIN_DOC
|
|
! Primitive coefficients, read from input. Those should not be used directly, as the MOs are expressed on the basis of **normalized** AOs.
|
|
END_DOC
|
|
do i = 1, n_func_tot
|
|
new_ao_coef_1s(i) = 1.d0
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ integer, new_ao_prim_num_1s, (n_func_tot)]
|
|
implicit none
|
|
integer :: i
|
|
do i = 1, n_func_tot
|
|
new_ao_prim_num_1s(i) = 1
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [integer, new_ao_power_1s, (n_func_tot,3)]
|
|
implicit none
|
|
new_ao_power_1s = 0
|
|
END_PROVIDER
|
|
|
|
integer function return_xyz_int(power)
|
|
implicit none
|
|
integer,intent(in) :: power(3)
|
|
if(power(1) == 1 .and. power(2) ==0 .and. power(3) ==0)then
|
|
return_xyz_int = 1
|
|
else if (power(2) == 1 .and. power(1) ==0 .and. power(3) ==0)then
|
|
return_xyz_int = 2
|
|
else if (power(3) == 1 .and. power(1) ==0 .and. power(1) ==0)then
|
|
return_xyz_int = 3
|
|
else
|
|
return_xyz_int = -1000
|
|
endif
|
|
end
|