mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-26 21:33:30 +01:00
102 lines
4.0 KiB
Fortran
102 lines
4.0 KiB
Fortran
double precision function exp_dl(x,n)
|
|
implicit none
|
|
double precision, intent(in) :: x
|
|
integer , intent(in) :: n
|
|
integer :: i
|
|
exp_dl = 1.d0
|
|
do i = 1, n
|
|
exp_dl += fact_inv(i) * x**dble(i)
|
|
enddo
|
|
end
|
|
|
|
subroutine exp_dl_rout(x,n, array)
|
|
implicit none
|
|
double precision, intent(in) :: x
|
|
integer , intent(in) :: n
|
|
double precision, intent(out):: array(0:n)
|
|
integer :: i
|
|
double precision :: accu
|
|
accu = 1.d0
|
|
array(0) = 1.d0
|
|
do i = 1, n
|
|
accu += fact_inv(i) * x**dble(i)
|
|
array(i) = accu
|
|
enddo
|
|
end
|
|
|
|
subroutine exp_dl_ovlp_stg_phi_ij(zeta,D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta,n_taylor,array_ints,integral_taylor,exponent_exp)
|
|
BEGIN_DOC
|
|
! Computes the following integrals :
|
|
!
|
|
! .. math::
|
|
!
|
|
! array(i) = \int dr EXP{exponent_exp * [exp(-gam*i (r - D)) exp(-delta*i * (r -D)^2)] (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
|
!
|
|
!
|
|
! and gives back the Taylor expansion of the exponential in integral_taylor
|
|
END_DOC
|
|
|
|
implicit none
|
|
double precision, intent(in) :: zeta ! prefactor of the argument of the exp(-zeta*x)
|
|
integer, intent(in) :: n_taylor ! order of the Taylor expansion of the exponential
|
|
double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D
|
|
double precision, intent(in) :: delta ! gaussian in r-r_D
|
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
|
double precision, intent(in) :: exponent_exp
|
|
integer, intent(in) :: power_A(3),power_B(3)
|
|
double precision, intent(out) :: array_ints(0:n_taylor),integral_taylor
|
|
|
|
integer :: i,dim1
|
|
double precision :: delta_exp,gam_exp,ovlp_stg_gauss_int_phi_ij
|
|
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
|
dim1=100
|
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
|
array_ints(0) = overlap
|
|
integral_taylor = array_ints(0)
|
|
do i = 1, n_taylor
|
|
delta_exp = dble(i) * delta
|
|
gam_exp = dble(i) * gam
|
|
array_ints(i) = ovlp_stg_gauss_int_phi_ij(D_center,gam_exp,delta_exp,A_center,B_center,power_A,power_B,alpha,beta)
|
|
integral_taylor += (-zeta*exponent_exp)**dble(i) * fact_inv(i) * array_ints(i)
|
|
enddo
|
|
|
|
end
|
|
|
|
subroutine exp_dl_erf_stg_phi_ij(zeta,D_center,gam,delta,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu,n_taylor,array_ints,integral_taylor)
|
|
BEGIN_DOC
|
|
! Computes the following integrals :
|
|
!
|
|
! .. math::
|
|
!
|
|
! array(i) = \int dr exp(-gam*i (r - D)) exp(-delta*i * (r -D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
|
! \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
|
!
|
|
!
|
|
! and gives back the Taylor expansion of the exponential in integral_taylor
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: n_taylor ! order of the Taylor expansion of the exponential
|
|
double precision, intent(in) :: zeta ! prefactor of the argument of the exp(-zeta*x)
|
|
double precision, intent(in) :: D_center(3), gam ! pure Slater "D" in r-r_D
|
|
double precision, intent(in) :: delta ! gaussian in r-r_D
|
|
double precision, intent(in) :: C_center(3),mu ! coulomb center "C" and "mu" in the erf(mu*x)/x function
|
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
|
integer, intent(in) :: power_A(3),power_B(3)
|
|
double precision, intent(out) :: array_ints(0:n_taylor),integral_taylor
|
|
|
|
integer :: i,dim1
|
|
double precision :: delta_exp,gam_exp,NAI_pol_mult_erf,erf_mu_stg_gauss_int_phi_ij
|
|
dim1=100
|
|
|
|
array_ints(0) = NAI_pol_mult_erf(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_max_integrals,mu)
|
|
integral_taylor = array_ints(0)
|
|
do i = 1, n_taylor
|
|
delta_exp = dble(i) * delta
|
|
gam_exp = dble(i) * gam
|
|
array_ints(i) = erf_mu_stg_gauss_int_phi_ij(D_center,gam_exp,delta_exp,A_center,B_center,power_A,power_B,alpha,beta,C_center,mu)
|
|
integral_taylor += (-zeta)**dble(i) * fact_inv(i) * array_ints(i)
|
|
enddo
|
|
|
|
end
|