9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-09 11:43:55 +01:00
qp2/docs/source/modules/utils.rst
2024-12-04 15:58:59 +01:00

4428 lines
81 KiB
ReStructuredText

.. _module_utils:
.. program:: utils
.. default-role:: option
=====
utils
=====
Contains general purpose utilities (sorting, maps, etc).
EZFIO parameters
----------------
.. option:: restore_symm
If true, try to find symmetry in the MO coefficient matrices
Default: False
Providers
---------
.. c:var:: au_to_d
File : :file:`utils/units.irp.f`
.. code:: fortran
double precision :: ha_to_ev
double precision :: au_to_d
double precision :: planck_cte
double precision :: light_speed
double precision :: ha_to_j
double precision :: ha_to_nm
Some conversion between different units
.. c:var:: binom
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision, allocatable :: binom (0:40,0:40)
double precision, allocatable :: binom_transp (0:40,0:40)
Binomial coefficients
Needed by:
.. hlist::
:columns: 3
* :c:data:`binom_int`
* :c:data:`dettocsftransformationmatrix`
* :c:data:`nsomomax`
* :c:data:`psi_csf_coef`
.. c:var:: binom_int
File : :file:`utils/util.irp.f`
.. code:: fortran
integer*8, allocatable :: binom_int (0:40,0:40)
integer*8, allocatable :: binom_int_transp (0:40,0:40)
Binomial coefficients, as integers*8
Needs:
.. hlist::
:columns: 3
* :c:data:`binom`
Needed by:
.. hlist::
:columns: 3
* :c:data:`dominant_dets_of_cfgs`
* :c:data:`n_dominant_dets_of_cfgs`
* :c:data:`psi_configuration_to_psi_det`
.. c:var:: binom_int_transp
File : :file:`utils/util.irp.f`
.. code:: fortran
integer*8, allocatable :: binom_int (0:40,0:40)
integer*8, allocatable :: binom_int_transp (0:40,0:40)
Binomial coefficients, as integers*8
Needs:
.. hlist::
:columns: 3
* :c:data:`binom`
Needed by:
.. hlist::
:columns: 3
* :c:data:`dominant_dets_of_cfgs`
* :c:data:`n_dominant_dets_of_cfgs`
* :c:data:`psi_configuration_to_psi_det`
.. c:var:: binom_transp
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision, allocatable :: binom (0:40,0:40)
double precision, allocatable :: binom_transp (0:40,0:40)
Binomial coefficients
Needed by:
.. hlist::
:columns: 3
* :c:data:`binom_int`
* :c:data:`dettocsftransformationmatrix`
* :c:data:`nsomomax`
* :c:data:`psi_csf_coef`
.. c:var:: degree_max_integration_lebedev
File : :file:`utils/angular_integration.irp.f`
.. code:: fortran
integer :: degree_max_integration_lebedev
integrate correctly a polynom of order "degree_max_integration_lebedev"
needed for the angular integration according to LEBEDEV formulae
Needed by:
.. hlist::
:columns: 3
* :c:data:`n_points_integration_angular_lebedev`
* :c:data:`theta_angular_integration_lebedev`
.. c:function:: dtranspose:
File : :file:`utils/transpose.irp.f`
.. code:: fortran
recursive subroutine dtranspose(A,LDA,B,LDB,d1,d2)
Transpose input matrix A into output matrix B
Called by:
.. hlist::
:columns: 3
* :c:func:`dtranspose`
* :c:func:`h_s2_u_0_nstates_openmp`
* :c:func:`h_s2_u_0_nstates_zmq`
* :c:func:`h_s2_u_0_two_e_nstates_openmp`
* :c:func:`h_u_0_nstates_openmp`
* :c:func:`h_u_0_nstates_zmq`
* :c:func:`orb_range_2_rdm_openmp`
* :c:func:`orb_range_2_rdm_state_av_openmp`
* :c:func:`orb_range_2_trans_rdm_openmp`
Calls:
.. hlist::
:columns: 3
* :c:func:`dtranspose`
.. c:var:: fact_inv
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision, allocatable :: fact_inv (128)
1/n!
.. c:function:: give_explicit_cpoly_and_cgaussian:
File : :file:`utils/cgtos_utils.irp.f`
.. code:: fortran
subroutine give_explicit_cpoly_and_cgaussian(P_new, P_center, p, fact_k, iorder, &
alpha, beta, a, b, Ae_center, Be_center, Ap_center, Bp_center, dim)
Transforms the product of
(x - x_Ap)^a(1) (x - x_Bp)^b(1) exp(-alpha (x - x_Ae)^2) exp(-beta (x - x_Be)^2) x
(y - y_Ap)^a(2) (y - y_Bp)^b(2) exp(-alpha (y - y_Ae)^2) exp(-beta (y - y_Be)^2) x
(z - z_Ap)^a(3) (z - z_Bp)^b(3) exp(-alpha (z - z_Ae)^2) exp(-beta (z - z_Be)^2)
into
fact_k * [sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x] exp (-p (x-P_center(1))^2)
* [sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y] exp (-p (y-P_center(2))^2)
* [sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z] exp (-p (z-P_center(3))^2)
WARNING ::: IF fact_k is too smal then:
returns a "s" function centered in zero
with an inifinite exponent and a zero polynom coef
Called by:
.. hlist::
:columns: 3
* :c:func:`ao_2e_cgtos_schwartz_accel`
* :c:func:`ao_two_e_integral_cgtos`
* :c:func:`overlap_cgaussian_xyz`
Calls:
.. hlist::
:columns: 3
* :c:func:`cgaussian_product`
* :c:func:`multiply_cpoly`
* :c:func:`recentered_cpoly2`
.. c:function:: give_explicit_cpoly_and_cgaussian_x:
File : :file:`utils/cgtos_utils.irp.f`
.. code:: fortran
subroutine give_explicit_cpoly_and_cgaussian_x(P_new, P_center, p, fact_k, iorder, &
alpha, beta, a, b, Ae_center, Be_center, Ap_center, Bp_center, dim)
Transform the product of
(x - x_Ap)^a (x - x_Bp)^b exp(-alpha (r - Ae)^2) exp(-beta (r - Be)^2)
into
fact_k \sum_{i=0}^{iorder} (x - x_P)^i exp(-p (r - P)^2)
Called by:
.. hlist::
:columns: 3
* :c:func:`overlap_cgaussian_x`
Calls:
.. hlist::
:columns: 3
* :c:func:`multiply_cpoly`
* :c:func:`recentered_cpoly2`
.. c:var:: ha_to_ev
File : :file:`utils/units.irp.f`
.. code:: fortran
double precision :: ha_to_ev
double precision :: au_to_d
double precision :: planck_cte
double precision :: light_speed
double precision :: ha_to_j
double precision :: ha_to_nm
Some conversion between different units
.. c:var:: ha_to_j
File : :file:`utils/units.irp.f`
.. code:: fortran
double precision :: ha_to_ev
double precision :: au_to_d
double precision :: planck_cte
double precision :: light_speed
double precision :: ha_to_j
double precision :: ha_to_nm
Some conversion between different units
.. c:var:: ha_to_nm
File : :file:`utils/units.irp.f`
.. code:: fortran
double precision :: ha_to_ev
double precision :: au_to_d
double precision :: planck_cte
double precision :: light_speed
double precision :: ha_to_j
double precision :: ha_to_nm
Some conversion between different units
.. c:var:: inv_int
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision, allocatable :: inv_int (128)
1/i
.. c:var:: light_speed
File : :file:`utils/units.irp.f`
.. code:: fortran
double precision :: ha_to_ev
double precision :: au_to_d
double precision :: planck_cte
double precision :: light_speed
double precision :: ha_to_j
double precision :: ha_to_nm
Some conversion between different units
.. c:var:: n_points_integration_angular_lebedev
File : :file:`utils/angular_integration.irp.f`
.. code:: fortran
integer :: n_points_integration_angular_lebedev
Number of points needed for the angular integral
Needs:
.. hlist::
:columns: 3
* :c:data:`degree_max_integration_lebedev`
Needed by:
.. hlist::
:columns: 3
* :c:data:`theta_angular_integration_lebedev`
.. c:var:: nproc
File : :file:`utils/util.irp.f`
.. code:: fortran
integer :: nproc
Number of current OpenMP threads
Needed by:
.. hlist::
:columns: 3
* :c:data:`ao_two_e_integrals_erf_in_map`
* :c:data:`ao_two_e_integrals_in_map`
* :c:data:`cholesky_ao_num`
* :c:data:`h_apply_buffer_allocated`
* :c:data:`n_det`
* :c:data:`nthreads_davidson`
* :c:data:`nthreads_pt2`
.. c:function:: overlap_cgaussian_xyz:
File : :file:`utils/cgtos_one_e.irp.f`
.. code:: fortran
subroutine overlap_cgaussian_xyz(Ae_center, Be_center, alpha, beta, power_A, power_B, &
Ap_center, Bp_center, overlap_x, overlap_y, overlap_z, overlap, dim)
S_x = \int (x - Ap_x)^{a_x} exp(-\alpha (x - Ae_x)^2)
(x - Bp_x)^{b_x} exp(-\beta (x - Be_x)^2) dx
S = S_x S_y S_z
for complex arguments
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_coef_norm_cgtos`
* :c:data:`ao_deriv2_cgtos_x`
* :c:data:`ao_overlap_cgtos`
Calls:
.. hlist::
:columns: 3
* :c:func:`give_explicit_cpoly_and_cgaussian`
.. c:var:: phi_angular_integration_lebedev
File : :file:`utils/angular_integration.irp.f`
.. code:: fortran
double precision, allocatable :: theta_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: phi_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: weights_angular_integration_lebedev (n_points_integration_angular_lebedev)
Theta phi values together with the weights values for the angular integration :
integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi)
Note that theta and phi are in DEGREES !!
Needs:
.. hlist::
:columns: 3
* :c:data:`degree_max_integration_lebedev`
* :c:data:`n_points_integration_angular_lebedev`
.. c:var:: planck_cte
File : :file:`utils/units.irp.f`
.. code:: fortran
double precision :: ha_to_ev
double precision :: au_to_d
double precision :: planck_cte
double precision :: light_speed
double precision :: ha_to_j
double precision :: ha_to_nm
Some conversion between different units
.. c:var:: qp_max_mem
File : :file:`utils/memory.irp.f`
.. code:: fortran
integer :: qp_max_mem
Maximum memory in Gb
Needs:
.. hlist::
:columns: 3
* :c:data:`file_lock`
* :c:data:`mpi_master`
Needed by:
.. hlist::
:columns: 3
* :c:data:`ao_two_e_integral_alpha_chol`
* :c:data:`cholesky_ao_num`
* :c:data:`mo_two_e_integrals_erf_in_map`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`pt2_j`
* :c:data:`pt2_w`
.. c:var:: shiftfact_op5_inv
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision, allocatable :: shiftfact_op5_inv (128)
1 / Gamma(n + 0.5)
.. c:var:: theta_angular_integration_lebedev
File : :file:`utils/angular_integration.irp.f`
.. code:: fortran
double precision, allocatable :: theta_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: phi_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: weights_angular_integration_lebedev (n_points_integration_angular_lebedev)
Theta phi values together with the weights values for the angular integration :
integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi)
Note that theta and phi are in DEGREES !!
Needs:
.. hlist::
:columns: 3
* :c:data:`degree_max_integration_lebedev`
* :c:data:`n_points_integration_angular_lebedev`
.. c:function:: transpose:
File : :file:`utils/transpose.irp.f`
.. code:: fortran
recursive subroutine transpose(A,LDA,B,LDB,d1,d2)
Transpose input matrix A into output matrix B
Called by:
.. hlist::
:columns: 3
* :c:func:`transpose`
Calls:
.. hlist::
:columns: 3
* :c:func:`transpose`
.. c:var:: weights_angular_integration_lebedev
File : :file:`utils/angular_integration.irp.f`
.. code:: fortran
double precision, allocatable :: theta_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: phi_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: weights_angular_integration_lebedev (n_points_integration_angular_lebedev)
Theta phi values together with the weights values for the angular integration :
integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi)
Note that theta and phi are in DEGREES !!
Needs:
.. hlist::
:columns: 3
* :c:data:`degree_max_integration_lebedev`
* :c:data:`n_points_integration_angular_lebedev`
Subroutines / functions
-----------------------
.. c:function:: add_cpoly:
File : :file:`utils/cgtos_utils.irp.f`
.. code:: fortran
subroutine add_cpoly(b, nb, c, nc, d, nd)
Add two complex polynomials
D(t) =! D(t) +( B(t) + C(t))
.. c:function:: add_cpoly_multiply:
File : :file:`utils/cgtos_utils.irp.f`
.. code:: fortran
subroutine add_cpoly_multiply(b, nb, cst, d, nd)
Add a complex polynomial multiplied by a complex constant
D(t) =! D(t) +( cst * B(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`general_primitive_integral_cgtos`
.. c:function:: add_poly:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine add_poly(b,nb,c,nc,d,nd)
Add two polynomials
D(t) =! D(t) +( B(t)+C(t))
.. c:function:: add_poly_multiply:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine add_poly_multiply(b,nb,cst,d,nd)
Add a polynomial multiplied by a constant
D(t) =! D(t) +( cst * B(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`general_primitive_integral`
* :c:func:`general_primitive_integral_erf`
.. c:function:: apply_rotation:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine apply_rotation(A,LDA,R,LDR,B,LDB,m,n)
Apply the rotation found by find_rotation
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
.. c:function:: approx_dble:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function approx_dble(a,n)
.. c:function:: binom_func:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function binom_func(i,j)
.. math ::
\frac{i!}{j!(i-j)!}
.. c:function:: cgaussian_product:
File : :file:`utils/cgtos_utils.irp.f`
.. code:: fortran
subroutine cgaussian_product(a, xa, b, xb, k, p, xp)
complex Gaussian product
e^{-a (r-r_A)^2} e^{-b (r-r_B)^2} = k e^{-p (r-r_P)^2}
Called by:
.. hlist::
:columns: 3
* :c:func:`give_explicit_cpoly_and_cgaussian`
.. c:function:: cgaussian_product_x:
File : :file:`utils/cgtos_utils.irp.f`
.. code:: fortran
subroutine cgaussian_product_x(a, xa, b, xb, k, p, xp)
complex Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K e^{-p (x-x_P)^2}
.. c:function:: check_mem:
File : :file:`utils/memory.irp.f`
.. code:: fortran
subroutine check_mem(rss_in,routine)
Checks if n gigabytes can be allocated. If not, exit the run.
Needs:
.. hlist::
:columns: 3
* :c:data:`qp_max_mem`
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_two_e_integral_alpha_chol`
* :c:func:`create_selection_buffer`
* :c:func:`dav_double_dressed`
* :c:func:`davidson_diag_csf_hjj`
* :c:func:`davidson_diag_hjj`
* :c:func:`davidson_diag_hjj_sjj`
* :c:func:`davidson_diag_nonsym_hjj`
* :c:func:`davidson_general`
* :c:func:`davidson_general_diag_dressed_ext_rout_nonsym_b1space`
* :c:func:`davidson_general_ext_rout`
* :c:func:`davidson_general_ext_rout_diag_dressed`
* :c:func:`davidson_general_ext_rout_dressed`
* :c:func:`davidson_general_ext_rout_nonsym_b1space`
* :c:func:`make_selection_buffer_s2`
* :c:func:`pt2_collector`
* :c:data:`pt2_j`
* :c:data:`pt2_w`
* :c:func:`remove_duplicates_in_selection_buffer`
* :c:func:`run_cipsi`
* :c:func:`run_slave_main`
* :c:func:`run_stochastic_cipsi`
* :c:func:`selection_collector`
* :c:func:`testteethbuilding`
* :c:func:`zmq_pt2`
Calls:
.. hlist::
:columns: 3
* :c:func:`print_memory_usage`
* :c:func:`resident_memory`
.. c:function:: check_sym:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine check_sym(A, n)
.. c:function:: cpx_erf:
File : :file:`utils/cpx_erf.irp.f`
.. code:: fortran
complex*16 function cpx_erf(x, y)
compute erf(z) for z = x + i y
REF: Abramowitz and Stegun
.. c:function:: cpx_erf_1:
File : :file:`utils/cpx_erf.irp.f`
.. code:: fortran
complex*16 function cpx_erf_1(x, y)
compute erf(z) for z = x + i y
REF: Abramowitz and Stegun
.. c:function:: crint:
File : :file:`utils/cgtos_utils.irp.f`
.. code:: fortran
complex*16 function crint(n, rho)
.. c:function:: crint_1:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
complex*16 function crint_1(n, rho)
Calls:
.. hlist::
:columns: 3
* :c:func:`zboysfun00_1`
.. c:function:: crint_1_vec:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
subroutine crint_1_vec(n_max, rho, vals)
Called by:
.. hlist::
:columns: 3
* :c:func:`crint_sum`
Calls:
.. hlist::
:columns: 3
* :c:func:`crint_smallz_vec`
* :c:func:`zboysfun00_1`
.. c:function:: crint_2:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
complex*16 function crint_2(n, rho)
Calls:
.. hlist::
:columns: 3
* :c:func:`zboysfun`
* :c:func:`zboysfunnrp`
.. c:function:: crint_2_vec:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
subroutine crint_2_vec(n_max, rho, vals)
Calls:
.. hlist::
:columns: 3
* :c:func:`crint_smallz_vec`
* :c:func:`zboysfun`
* :c:func:`zboysfunnrp`
.. c:function:: crint_quad_1:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
subroutine crint_quad_1(n, rho, n_quad, crint_quad)
.. c:function:: crint_quad_12:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
subroutine crint_quad_12(n, rho, n_quad, crint_quad)
Called by:
.. hlist::
:columns: 3
* :c:func:`crint_quad_12_vec`
.. c:function:: crint_quad_12_vec:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
subroutine crint_quad_12_vec(n_max, rho, vals)
Calls:
.. hlist::
:columns: 3
* :c:func:`crint_quad_12`
.. c:function:: crint_quad_2:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
subroutine crint_quad_2(n, rho, n_quad, crint_quad)
.. c:function:: crint_smallz:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
complex*16 function crint_smallz(n, rho)
Standard version of rint
.. c:function:: crint_smallz_vec:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
subroutine crint_smallz_vec(n_max, rho, vals)
Standard version of rint
Called by:
.. hlist::
:columns: 3
* :c:func:`crint_1_vec`
* :c:func:`crint_2_vec`
.. c:function:: crint_sum:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
complex*16 function crint_sum(n_pt_out, rho, d1)
Calls:
.. hlist::
:columns: 3
* :c:func:`crint_1_vec`
.. c:function:: dble_fact:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function dble_fact(n)
.. c:function:: dble_fact_even:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function dble_fact_even(n) result(fact2)
n!!
.. c:function:: dble_fact_odd:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function dble_fact_odd(n) result(fact2)
n!!
.. c:function:: dble_logfact:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function dble_logfact(n) result(logfact2)
n!!
.. c:function:: derf_mu_x:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function derf_mu_x(mu,x)
.. c:function:: diag_mat_per_fock_degen:
File : :file:`utils/block_diag_degen.irp.f`
.. code:: fortran
subroutine diag_mat_per_fock_degen(fock_diag, mat_ref, n, thr_d, thr_nd, thr_deg, leigvec, reigvec, eigval)
subroutine that diagonalizes a matrix mat_ref BY BLOCK
the blocks are defined by the elements having the SAME DEGENERACIES in the entries "fock_diag"
examples : all elements having degeneracy 1 in fock_diag (i.e. not being degenerated) will be treated together
: all elements having degeneracy 2 in fock_diag (i.e. two elements are equal) will be treated together
: all elements having degeneracy 3 in fock_diag (i.e. two elements are equal) will be treated together
etc... the advantage is to guarentee no spurious mixing because of numerical problems.
Calls:
.. hlist::
:columns: 3
* :c:func:`dsort`
* :c:func:`give_degen_full_list`
* :c:func:`isort`
* :c:func:`non_hrmt_bieig`
.. c:function:: diag_mat_per_fock_degen_core:
File : :file:`utils/block_diag_degen_core.irp.f`
.. code:: fortran
subroutine diag_mat_per_fock_degen_core(fock_diag, mat_ref, listcore,ncore, n, thr_d, thr_nd, thr_deg, leigvec, reigvec, eigval)
subroutine that diagonalizes a matrix mat_ref BY BLOCK
the blocks are defined by the elements having the SAME DEGENERACIES in the entries "fock_diag"
the elements of listcore are untouched
examples : all elements having degeneracy 1 in fock_diag (i.e. not being degenerated) will be treated together
: all elements having degeneracy 2 in fock_diag (i.e. two elements are equal) will be treated together
: all elements having degeneracy 3 in fock_diag (i.e. two elements are equal) will be treated together
etc... the advantage is to guarentee no spurious mixing because of numerical problems.
Calls:
.. hlist::
:columns: 3
* :c:func:`dsort`
* :c:func:`give_degen_full_listcore`
* :c:func:`isort`
* :c:func:`non_hrmt_bieig`
.. c:function:: diag_nonsym_right:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine diag_nonsym_right(n, A, A_ldim, V, V_ldim, energy, E_ldim)
Called by:
.. hlist::
:columns: 3
* :c:func:`davidson_diag_nonsym_hjj`
* :c:func:`davidson_general_diag_dressed_ext_rout_nonsym_b1space`
* :c:func:`davidson_general_ext_rout_nonsym_b1space`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgeevx`
* :c:func:`dsort`
.. c:function:: diagonalize_sym_matrix:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine diagonalize_sym_matrix(N, A, e)
Diagonalize a symmetric matrix
Calls:
.. hlist::
:columns: 3
* :c:func:`dsyev`
.. c:function:: dset_order:
File : :file:`utils/sort.irp.f_template_90`
.. code:: fortran
subroutine dset_order(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_coef_norm_cgtos_ord`
* :c:data:`ao_coef_normalized_ordered`
* :c:func:`h_s2_u_0_nstates_openmp`
* :c:func:`h_s2_u_0_nstates_zmq`
* :c:func:`h_s2_u_0_two_e_nstates_openmp`
* :c:func:`h_u_0_nstates_openmp`
* :c:func:`h_u_0_nstates_zmq`
* :c:func:`orb_range_2_rdm_openmp`
* :c:func:`orb_range_2_rdm_state_av_openmp`
* :c:func:`orb_range_2_trans_rdm_openmp`
* :c:data:`psi_bilinear_matrix_transp_values`
* :c:data:`psi_bilinear_matrix_values`
* :c:func:`restore_symmetry`
.. c:function:: dset_order_big:
File : :file:`utils/sort.irp.f_template_90`
.. code:: fortran
subroutine dset_order_big(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: eigsvd:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine eigSVD(A,LDA,U,LDU,D,Vt,LDVt,m,n)
Algorithm 3 of https://arxiv.org/pdf/1810.06860.pdf
A(m,n) = U(m,n) D(n) Vt(n,n) with m>n
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`dscal`
* :c:func:`lapack_diagd`
* :c:func:`svd`
.. c:function:: erf_e:
File : :file:`utils/cpx_erf.irp.f`
.. code:: fortran
complex*16 function erf_E(x, yabs)
.. c:function:: erf_f:
File : :file:`utils/cpx_erf.irp.f`
.. code:: fortran
double precision function erf_F(x, yabs)
.. c:function:: erf_g:
File : :file:`utils/cpx_erf.irp.f`
.. code:: fortran
complex*16 function erf_G(x, yabs)
.. c:function:: erf_h:
File : :file:`utils/cpx_erf.irp.f`
.. code:: fortran
complex*16 function erf_H(x, yabs)
.. c:function:: exp_matrix:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine exp_matrix(X,n,exp_X)
exponential of the matrix X: X has to be ANTI HERMITIAN !!
taken from Hellgaker, jorgensen, Olsen book
section evaluation of matrix exponential (Eqs. 3.1.29 to 3.1.31)
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`get_a_squared`
* :c:func:`lapack_diagd`
.. c:function:: exp_matrix_taylor:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine exp_matrix_taylor(X,n,exp_X,converged)
exponential of a general real matrix X using the Taylor expansion of exp(X)
returns the logical converged which checks the convergence
exponential of X using Taylor expansion
Called by:
.. hlist::
:columns: 3
* :c:data:`umat`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
.. c:function:: extrapolate_data:
File : :file:`utils/extrapolation.irp.f`
.. code:: fortran
subroutine extrapolate_data(N_data, data, pt2, output)
Extrapolate the data to the FCI limit
Called by:
.. hlist::
:columns: 3
* :c:func:`increment_n_iter`
Calls:
.. hlist::
:columns: 3
* :c:func:`get_pseudo_inverse`
.. c:function:: f_integral:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function F_integral(n,p)
function that calculates the following integral
\int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx
.. c:function:: fact:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function fact(n)
n!
.. c:function:: fc_integral:
File : :file:`utils/cgtos_utils.irp.f`
.. code:: fortran
complex*16 function Fc_integral(n, inv_sq_p)
function that calculates the following integral
\int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx
for complex valued p
.. c:function:: find_rotation:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine find_rotation(A,LDA,B,m,C,n)
Find A.C = B
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`get_pseudo_inverse`
.. c:function:: format_w_error:
File : :file:`utils/format_w_error.irp.f`
.. code:: fortran
subroutine format_w_error(value,error,size_nb,max_nb_digits,format_value,str_error)
Format for double precision, value(error)
Called by:
.. hlist::
:columns: 3
* :c:func:`pt2_collector`
Calls:
.. hlist::
:columns: 3
* :c:func:`lock_io`
* :c:func:`unlock_io`
.. c:function:: gaussian_product:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine gaussian_product(a,xa,b,xb,k,p,xp)
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
Called by:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian`
* :c:func:`give_explicit_poly_and_gaussian_double`
.. c:function:: gaussian_product_v:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine gaussian_product_v(a, xa, LD_xa, b, xb, k, p, xp, n_points)
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
Using multiple A centers
Called by:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian_v`
.. c:function:: gaussian_product_x:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine gaussian_product_x(a,xa,b,xb,k,p,xp)
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
Called by:
.. hlist::
:columns: 3
* :c:func:`overlap_gaussian_xyz`
.. c:function:: gaussian_product_x_v:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine gaussian_product_x_v(a,xa,b,xb,k,p,xp,n_points)
Gaussian product in 1D with multiple xa
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
.. c:function:: get_a_squared:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine get_A_squared(A,n,A2)
A2 = A A where A is n x n matrix. Use the dgemm routine
Called by:
.. hlist::
:columns: 3
* :c:func:`exp_matrix`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
.. c:function:: get_ab_prod:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine get_AB_prod(A,n,m,B,l,AB)
AB = A B where A is n x m, B is m x l. Use the dgemm routine
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
.. c:function:: get_inverse:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine get_inverse(A,LDA,m,C,LDC)
Returns the inverse of the square matrix A
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_ortho_canonical_coef_inv`
* :c:data:`overlap_states`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgetrf`
* :c:func:`dgetri`
.. c:function:: get_inverse_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine get_inverse_complex(A,LDA,m,C,LDC)
Returns the inverse of the square matrix A
Calls:
.. hlist::
:columns: 3
* :c:func:`zgetrf`
* :c:func:`zgetri`
.. c:function:: get_pseudo_inverse:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine get_pseudo_inverse(A, LDA, m, n, C, LDC, cutoff)
Find C = A^-1
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_cart_to_sphe_inv`
* :c:func:`extrapolate_data`
* :c:func:`find_rotation`
* :c:data:`s_inv`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`dgesvd`
.. c:function:: get_pseudo_inverse_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine get_pseudo_inverse_complex(A,LDA,m,n,C,LDC,cutoff)
Find C = A^-1
Called by:
.. hlist::
:columns: 3
* :c:data:`s_inv_complex`
Calls:
.. hlist::
:columns: 3
* :c:func:`zgesvd`
.. c:function:: get_total_available_memory:
File : :file:`utils/memory.irp.f`
.. code:: fortran
integer function get_total_available_memory() result(res)
Returns the total available memory on the current machine
.. c:function:: give_degen:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine give_degen(A, n, shift, list_degen, n_degen_list)
returns n_degen_list :: the number of degenerated SET of elements (i.e. with |A(i)-A(i+1)| below shift)
for each of these sets, list_degen(1,i) = first degenerate element of the set i,
list_degen(2,i) = last degenerate element of the set i.
.. c:function:: give_degen_full_list:
File : :file:`utils/block_diag_degen.irp.f`
.. code:: fortran
subroutine give_degen_full_list(A, n, thr, list_degen, n_degen_list)
you enter with an array A(n) and spits out all the elements degenerated up to thr
the elements of A(n) DON'T HAVE TO BE SORTED IN THE ENTRANCE: TOTALLY GENERAL
list_degen(i,0) = number of degenerate entries
list_degen(i,1) = index of the first degenerate entry
list_degen(i,2:list_degen(i,0)) = list of all other dengenerate entries
if list_degen(i,0) == 1 it means that there is no degeneracy for that element
Called by:
.. hlist::
:columns: 3
* :c:func:`diag_mat_per_fock_degen`
.. c:function:: give_degen_full_listcore:
File : :file:`utils/block_diag_degen_core.irp.f`
.. code:: fortran
subroutine give_degen_full_listcore(A, n, listcore, ncore, thr, list_degen, n_degen_list)
you enter with an array A(n) and spits out all the elements degenerated up to thr
the elements of A(n) DON'T HAVE TO BE SORTED IN THE ENTRANCE: TOTALLY GENERAL
list_degen(i,0) = number of degenerate entries
list_degen(i,1) = index of the first degenerate entry
list_degen(i,2:list_degen(i,0)) = list of all other dengenerate entries
if list_degen(i,0) == 1 it means that there is no degeneracy for that element
if list_degen(i,0) >= 1000 it means that it is core orbitals
Called by:
.. hlist::
:columns: 3
* :c:func:`diag_mat_per_fock_degen_core`
.. c:function:: give_explicit_poly_and_gaussian:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,dim)
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
WARNING ::: IF fact_k is too smal then:
returns a "s" function centered in zero
with an inifinite exponent and a zero polynom coef
Called by:
.. hlist::
:columns: 3
* :c:func:`ao_two_e_integral`
* :c:func:`ao_two_e_integral_erf`
* :c:func:`ao_two_e_integral_schwartz_accel`
* :c:func:`ao_two_e_integral_schwartz_accel_erf`
* :c:func:`give_explicit_poly_and_gaussian_double`
* :c:func:`overlap_gaussian_xyz`
Calls:
.. hlist::
:columns: 3
* :c:func:`gaussian_product`
* :c:func:`multiply_poly`
* :c:func:`recentered_poly2`
.. c:function:: give_explicit_poly_and_gaussian_double:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine give_explicit_poly_and_gaussian_double(P_new,P_center,p,fact_k,iorder,alpha,beta,gama,a,b,A_center,B_center,Nucl_center,dim)
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3)
exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) exp(-(r-Nucl_center)^2 gama
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
Calls:
.. hlist::
:columns: 3
* :c:func:`gaussian_product`
* :c:func:`give_explicit_poly_and_gaussian`
.. c:function:: give_explicit_poly_and_gaussian_v:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center, p, fact_k, iorder, alpha, beta, a, b, A_center, LD_A, B_center, n_points)
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (y-y_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
WARNING :: : IF fact_k is too smal then:
returns a "s" function centered in zero
with an inifinite exponent and a zero polynom coef
Called by:
.. hlist::
:columns: 3
* :c:func:`overlap_gaussian_xyz_v`
Calls:
.. hlist::
:columns: 3
* :c:func:`gaussian_product_v`
* :c:func:`multiply_poly_v`
* :c:func:`recentered_poly2_v`
* :c:func:`recentered_poly2_v0`
.. c:function:: give_explicit_poly_and_gaussian_x:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine give_explicit_poly_and_gaussian_x(P_new,P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,dim)
Transform the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2)
Called by:
.. hlist::
:columns: 3
* :c:func:`overlap_gaussian_x`
Calls:
.. hlist::
:columns: 3
* :c:func:`multiply_poly`
* :c:func:`recentered_poly2`
.. c:function:: give_pol_in_r:
File : :file:`utils/prim_in_r.irp.f`
.. code:: fortran
double precision function give_pol_in_r(r,pol,center, alpha,iorder, max_dim)
.. c:function:: hermite:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function hermite(n,x)
Hermite polynomial
.. c:function:: i2set_order:
File : :file:`utils/sort.irp.f_template_90`
.. code:: fortran
subroutine i2set_order(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
.. c:function:: i2set_order_big:
File : :file:`utils/sort.irp.f_template_90`
.. code:: fortran
subroutine i2set_order_big(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: i8set_order:
File : :file:`utils/sort.irp.f_template_90`
.. code:: fortran
subroutine i8set_order(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
.. c:function:: i8set_order_big:
File : :file:`utils/sort.irp.f_template_90`
.. code:: fortran
subroutine i8set_order_big(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: is_same_spin:
File : :file:`utils/util.irp.f`
.. code:: fortran
logical function is_same_spin(sigma_1, sigma_2)
true if sgn(sigma_1) = sgn(sigma_2)
.. c:function:: iset_order:
File : :file:`utils/sort.irp.f_template_90`
.. code:: fortran
subroutine iset_order(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
Called by:
.. hlist::
:columns: 3
* :c:data:`psi_bilinear_matrix_transp_values`
* :c:data:`psi_bilinear_matrix_values`
* :c:func:`restore_symmetry`
.. c:function:: iset_order_big:
File : :file:`utils/sort.irp.f_template_90`
.. code:: fortran
subroutine iset_order_big(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: kronecker_delta:
File : :file:`utils/util.irp.f`
.. code:: fortran
function Kronecker_delta(i, j) result(delta)
Kronecker Delta
.. c:function:: lapack_diag:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine lapack_diag(eigvalues,eigvectors,H,nmax,n)
Diagonalize matrix H
H is untouched between input and ouptut
eigevalues(i) = ith lowest eigenvalue of the H matrix
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
Called by:
.. hlist::
:columns: 3
* :c:data:`ci_electronic_energy`
* :c:func:`davidson_general`
* :c:func:`davidson_general_ext_rout`
* :c:func:`davidson_general_ext_rout_diag_dressed`
* :c:data:`difference_dm_eigvect`
* :c:func:`mo_as_eigvectors_of_mo_matrix`
* :c:data:`multi_s_x_dipole_moment_eigenvec`
* :c:data:`psi_coef_cas_diagonalized`
* :c:data:`sxeigenvec`
Calls:
.. hlist::
:columns: 3
* :c:func:`dsyev`
.. c:function:: lapack_diag_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine lapack_diag_complex(eigvalues,eigvectors,H,nmax,n)
Diagonalize matrix H (complex)
H is untouched between input and ouptut
eigevalues(i) = ith lowest eigenvalue of the H matrix
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
Calls:
.. hlist::
:columns: 3
* :c:func:`zheev`
.. c:function:: lapack_diagd:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine lapack_diagd(eigvalues,eigvectors,H,nmax,n)
Diagonalize matrix H
H is untouched between input and ouptut
eigevalues(i) = ith lowest eigenvalue of the H matrix
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
Called by:
.. hlist::
:columns: 3
* :c:func:`eigsvd`
* :c:func:`exp_matrix`
* :c:data:`inertia_tensor_eigenvectors`
Calls:
.. hlist::
:columns: 3
* :c:func:`dsyevd`
.. c:function:: lapack_diagd_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine lapack_diagd_complex(eigvalues,eigvectors,H,nmax,n)
Diagonalize matrix H(complex)
H is untouched between input and ouptut
eigevalues(i) = ith lowest eigenvalue of the H matrix
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
Calls:
.. hlist::
:columns: 3
* :c:func:`zheevd`
.. c:function:: lapack_diagd_diag_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine lapack_diagd_diag_complex(eigvalues,eigvectors,H,nmax,n)
Diagonalize matrix H(complex)
H is untouched between input and ouptut
eigevalues(i) = ith lowest eigenvalue of the H matrix
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
Calls:
.. hlist::
:columns: 3
* :c:func:`zheev`
* :c:func:`zheevd`
.. c:function:: lapack_diagd_diag_in_place_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine lapack_diagd_diag_in_place_complex(eigvalues,eigvectors,nmax,n)
Diagonalize matrix H(complex)
H is untouched between input and ouptut
eigevalues(i) = ith lowest eigenvalue of the H matrix
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
Calls:
.. hlist::
:columns: 3
* :c:func:`zheev`
* :c:func:`zheevd`
.. c:function:: logfact:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function logfact(n)
n!
.. c:function:: lowercase:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine lowercase(txt,n)
Transform to lower case
Called by:
.. hlist::
:columns: 3
* :c:func:`end_parallel_job`
* :c:func:`new_parallel_job`
.. c:function:: map_load_from_disk:
File : :file:`utils/map_functions.irp.f`
.. code:: fortran
subroutine map_load_from_disk(filename,map)
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_two_e_integrals_erf_in_map`
* :c:data:`ao_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_erf_in_map`
* :c:data:`mo_two_e_integrals_in_map`
Calls:
.. hlist::
:columns: 3
* :c:func:`c_f_pointer`
* :c:func:`mmap`
.. c:function:: map_save_to_disk:
File : :file:`utils/map_functions.irp.f`
.. code:: fortran
subroutine map_save_to_disk(filename,map)
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_two_e_integrals_erf_in_map`
* :c:data:`ao_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_erf_in_map`
* :c:data:`mo_two_e_integrals_in_map`
* :c:func:`save_erf_two_e_integrals_ao`
* :c:func:`save_erf_two_e_integrals_mo`
* :c:func:`save_erf_two_e_ints_ao_into_ints_ao`
* :c:func:`save_erf_two_e_ints_mo_into_ints_mo`
Calls:
.. hlist::
:columns: 3
* :c:func:`c_f_pointer`
* :c:func:`map_sort`
* :c:func:`mmap`
* :c:func:`msync`
.. c:function:: matrix_vector_product_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine matrix_vector_product_complex(u0,u1,matrix,sze,lda)
performs u1 =! performs u1 +( u0 * matrix)
Calls:
.. hlist::
:columns: 3
* :c:func:`zhemv`
.. c:function:: memory_of_double:
File : :file:`utils/memory.irp.f`
.. code:: fortran
double precision function memory_of_double(n)
Computes the memory required for n double precision elements in gigabytes.
.. c:function:: memory_of_double8:
File : :file:`utils/memory.irp.f`
.. code:: fortran
double precision function memory_of_double8(n)
Computes the memory required for n double precision elements in gigabytes.
.. c:function:: memory_of_int:
File : :file:`utils/memory.irp.f`
.. code:: fortran
double precision function memory_of_int(n)
Computes the memory required for n double precision elements in gigabytes.
.. c:function:: memory_of_int8:
File : :file:`utils/memory.irp.f`
.. code:: fortran
double precision function memory_of_int8(n)
Computes the memory required for n double precision elements in gigabytes.
.. c:function:: multiply_cpoly:
File : :file:`utils/cgtos_utils.irp.f`
.. code:: fortran
subroutine multiply_cpoly(b, nb, c, nc, d, nd)
Multiply two complex polynomials
D(t) =! D(t) +( B(t) * C(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`general_primitive_integral_cgtos`
* :c:func:`give_cpolynomial_mult_center_one_e`
* :c:func:`give_explicit_cpoly_and_cgaussian`
* :c:func:`give_explicit_cpoly_and_cgaussian_x`
* :c:func:`i_x1_pol_mult_a1_cgtos`
* :c:func:`i_x1_pol_mult_a2_cgtos`
* :c:func:`i_x1_pol_mult_one_e_cgtos`
* :c:func:`i_x1_pol_mult_recurs_cgtos`
* :c:func:`i_x2_pol_mult_cgtos`
* :c:func:`i_x2_pol_mult_one_e_cgtos`
.. c:function:: multiply_poly:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine multiply_poly(b,nb,c,nc,d,nd)
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`general_primitive_integral_erf`
* :c:func:`give_explicit_poly_and_gaussian`
* :c:func:`give_explicit_poly_and_gaussian_x`
* :c:func:`give_polynomial_mult_center_one_e`
* :c:func:`give_polynomial_mult_center_one_e_erf`
* :c:func:`give_polynomial_mult_center_one_e_erf_opt`
Calls:
.. hlist::
:columns: 3
* :c:func:`multiply_poly_b0`
* :c:func:`multiply_poly_b1`
* :c:func:`multiply_poly_b2`
* :c:func:`multiply_poly_c0`
* :c:func:`multiply_poly_c1`
* :c:func:`multiply_poly_c2`
.. c:function:: multiply_poly_b0:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine multiply_poly_b0(b,c,nc,d,nd)
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`multiply_poly`
.. c:function:: multiply_poly_b1:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine multiply_poly_b1(b,c,nc,d,nd)
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`multiply_poly`
.. c:function:: multiply_poly_b2:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine multiply_poly_b2(b,c,nc,d,nd)
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`multiply_poly`
.. c:function:: multiply_poly_c0:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine multiply_poly_c0(b,nb,c,d,nd)
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`multiply_poly`
.. c:function:: multiply_poly_c1:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine multiply_poly_c1(b,nb,c,d,nd)
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`multiply_poly`
.. c:function:: multiply_poly_c2:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine multiply_poly_c2(b,nb,c,d,nd)
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`i_x1_pol_mult_one_e`
* :c:func:`i_x2_pol_mult_one_e`
* :c:func:`multiply_poly`
.. c:function:: multiply_poly_v:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine multiply_poly_v(b,nb,c,nc,d,nd,n_points)
Multiply pairs of polynomials
D(t) =! D(t) +( B(t)*C(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian_v`
.. c:function:: normalize:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine normalize(u,sze)
Normalizes vector u
Called by:
.. hlist::
:columns: 3
* :c:func:`copy_h_apply_buffer_to_wf`
* :c:func:`dav_double_dressed`
* :c:func:`davidson_diag_csf_hjj`
* :c:func:`davidson_diag_hjj`
* :c:func:`davidson_diag_hjj_sjj`
* :c:func:`davidson_diag_nonsym_hjj`
* :c:func:`davidson_general`
* :c:func:`davidson_general_diag_dressed_ext_rout_nonsym_b1space`
* :c:func:`davidson_general_ext_rout`
* :c:func:`davidson_general_ext_rout_diag_dressed`
* :c:func:`davidson_general_ext_rout_dressed`
* :c:func:`davidson_general_ext_rout_nonsym_b1space`
* :c:func:`save_wavefunction_general`
Calls:
.. hlist::
:columns: 3
* :c:func:`dscal`
.. c:function:: nullify_small_elements:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine nullify_small_elements(m,n,A,LDA,thresh)
Called by:
.. hlist::
:columns: 3
* :c:data:`ci_electronic_energy`
* :c:func:`dav_double_dressed`
* :c:func:`davidson_diag_csf_hjj`
* :c:func:`davidson_diag_hjj`
* :c:func:`davidson_diag_hjj_sjj`
* :c:func:`davidson_diag_nonsym_hjj`
* :c:func:`davidson_general_ext_rout_dressed`
* :c:func:`hcore_guess`
* :c:data:`mo_one_e_integrals`
* :c:func:`save_natural_mos`
* :c:func:`save_natural_mos_canon_label`
* :c:func:`save_natural_mos_no_ov_rot`
* :c:func:`save_wavefunction_truncated`
.. c:function:: ortho_canonical:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_canonical(overlap,LDA,N,C,LDC,m,cutoff)
Compute C_new=C_old.U.s^-1/2 canonical orthogonalization.
overlap : overlap matrix
LDA : leftmost dimension of overlap array
N : Overlap matrix is NxN (array is (LDA,N) )
C : Coefficients of the vectors to orthogonalize. On exit,
orthogonal vectors
LDC : leftmost dimension of C
m : Coefficients matrix is MxN, ( array is (LDC,N) )
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_ortho_canonical_coef`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`svd`
.. c:function:: ortho_canonical_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_canonical_complex(overlap,LDA,N,C,LDC,m,cutoff)
Compute C_new=C_old.U.s^-1/2 canonical orthogonalization.
overlap : overlap matrix
LDA : leftmost dimension of overlap array
N : Overlap matrix is NxN (array is (LDA,N) )
C : Coefficients of the vectors to orthogonalize. On exit,
orthogonal vectors
LDC : leftmost dimension of C
m : Coefficients matrix is MxN, ( array is (LDC,N) )
Calls:
.. hlist::
:columns: 3
* :c:func:`svd_complex`
* :c:func:`zgemm`
.. c:function:: ortho_lowdin:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_lowdin(overlap,LDA,N,C,LDC,m,cutoff)
Compute C_new=C_old.S^-1/2 orthogonalization.
overlap : overlap matrix
LDA : leftmost dimension of overlap array
N : Overlap matrix is NxN (array is (LDA,N) )
C : Coefficients of the vectors to orthogonalize. On exit,
orthogonal vectors
LDC : leftmost dimension of C
M : Coefficients matrix is MxN, ( array is (LDC,N) )
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_ortho_lowdin_coef`
* :c:func:`orthonormalize_mos`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`svd`
.. c:function:: ortho_lowdin_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_lowdin_complex(overlap,LDA,N,C,LDC,m,cutoff)
Compute C_new=C_old.S^-1/2 orthogonalization.
overlap : overlap matrix
LDA : leftmost dimension of overlap array
N : Overlap matrix is NxN (array is (LDA,N) )
C : Coefficients of the vectors to orthogonalize. On exit,
orthogonal vectors
LDC : leftmost dimension of C
M : Coefficients matrix is MxN, ( array is (LDC,N) )
Calls:
.. hlist::
:columns: 3
* :c:func:`svd_complex`
* :c:func:`zgemm`
.. c:function:: ortho_qr:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_qr(A,LDA,m,n)
Orthogonalization using Q.R factorization
A : matrix to orthogonalize
LDA : leftmost dimension of A
m : Number of rows of A
n : Number of columns of A
Called by:
.. hlist::
:columns: 3
* :c:func:`davidson_diag_nonsym_hjj`
* :c:func:`davidson_general`
* :c:func:`davidson_general_diag_dressed_ext_rout_nonsym_b1space`
* :c:func:`davidson_general_ext_rout`
* :c:func:`davidson_general_ext_rout_diag_dressed`
* :c:func:`davidson_general_ext_rout_dressed`
* :c:func:`davidson_general_ext_rout_nonsym_b1space`
* :c:func:`ortho_svd`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgeqrf`
* :c:func:`dorgqr`
.. c:function:: ortho_qr_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_qr_complex(A,LDA,m,n)
Orthogonalization using Q.R factorization
A : matrix to orthogonalize
LDA : leftmost dimension of A
n : Number of rows of A
m : Number of columns of A
Calls:
.. hlist::
:columns: 3
* :c:func:`zgeqrf`
* :c:func:`zungqr`
.. c:function:: ortho_qr_unblocked:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_qr_unblocked(A,LDA,m,n)
Orthogonalization using Q.R factorization
A : matrix to orthogonalize
LDA : leftmost dimension of A
n : Number of rows of A
m : Number of columns of A
Calls:
.. hlist::
:columns: 3
* :c:func:`dgeqr2`
* :c:func:`dorg2r`
.. c:function:: ortho_qr_unblocked_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_qr_unblocked_complex(A,LDA,m,n)
Orthogonalization using Q.R factorization
A : matrix to orthogonalize
LDA : leftmost dimension of A
n : Number of rows of A
m : Number of columns of A
.. c:function:: ortho_svd:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_svd(A,LDA,m,n)
Orthogonalization via fast SVD
A : matrix to orthogonalize
LDA : leftmost dimension of A
m : Number of rows of A
n : Number of columns of A
Called by:
.. hlist::
:columns: 3
* :c:func:`randomized_svd`
Calls:
.. hlist::
:columns: 3
* :c:func:`ortho_qr`
* :c:func:`svd`
.. c:function:: overlap_cgaussian_x:
File : :file:`utils/cgtos_one_e.irp.f`
.. code:: fortran
complex*16 function overlap_cgaussian_x(Ae_center, Be_center, alpha, beta, power_A, power_B, Ap_center, Bp_center, dim)
\int_{-infty}^{+infty} (x - Ap_x)^ax (x - Bp_x)^bx exp(-alpha (x - Ae_x)^2) exp(-beta (x - Be_X)^2) dx
with complex arguments
Calls:
.. hlist::
:columns: 3
* :c:func:`give_explicit_cpoly_and_cgaussian_x`
.. c:function:: overlap_gaussian_x:
File : :file:`utils/one_e_integration.irp.f`
.. code:: fortran
double precision function overlap_gaussian_x(A_center,B_center,alpha,beta,power_A,power_B,dim)
.. math::
\sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx
Calls:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian_x`
.. c:function:: overlap_gaussian_xyz:
File : :file:`utils/one_e_integration.irp.f`
.. code:: fortran
subroutine overlap_gaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, overlap_x, overlap_y, overlap_z, overlap, dim)
.. math::
S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\
S = S_x S_y S_z
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_coef_normalized`
* :c:data:`ao_deriv2_x`
* :c:data:`ao_deriv_1_x`
* :c:data:`ao_dipole_x`
* :c:data:`ao_overlap`
* :c:data:`ao_spread_x`
* :c:data:`prim_normalization_factor`
* :c:data:`shell_normalization_factor`
Calls:
.. hlist::
:columns: 3
* :c:func:`gaussian_product_x`
* :c:func:`give_explicit_poly_and_gaussian`
.. c:function:: overlap_gaussian_xyz_v:
File : :file:`utils/one_e_integration.irp.f`
.. code:: fortran
subroutine overlap_gaussian_xyz_v(A_center, B_center, alpha, beta, power_A, power_B, overlap, n_points)
.. math::
S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\
S = S_x S_y S_z
Calls:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian_v`
.. c:function:: overlap_x_abs:
File : :file:`utils/one_e_integration.irp.f`
.. code:: fortran
subroutine overlap_x_abs(A_center, B_center, alpha, beta, power_A, power_B, overlap_x, lower_exp_val, dx, nx)
.. math ::
\int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_overlap_abs`
.. c:function:: pivoted_cholesky:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine pivoted_cholesky( A, rank, tol, ndim, U)
Called by:
.. hlist::
:columns: 3
* :c:func:`roothaan_hall_scf`
Calls:
.. hlist::
:columns: 3
* :c:func:`dpstrf`
.. c:function:: pol_modif_center:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)
Transform the pol centerd on A:
[ \sum_i ax_i (x-x_A)^i ] [ \sum_j ay_j (y-y_A)^j ] [ \sum_k az_k (z-z_A)^k ]
to a pol centered on B
[ \sum_i bx_i (x-x_B)^i ] [ \sum_j by_j (y-y_B)^j ] [ \sum_k bz_k (z-z_B)^k ]
Calls:
.. hlist::
:columns: 3
* :c:func:`pol_modif_center_x`
.. c:function:: pol_modif_center_x:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine pol_modif_center_x(A_center, B_center, iorder, A_pol, B_pol)
Transform the pol centerd on A:
[ \sum_i ax_i (x-x_A)^i ]
to a pol centered on B
[ \sum_i bx_i (x-x_B)^i ]
bx_i = \sum_{j=i}^{iorder} ax_j (x_B - x_A)^(j-i) j! / [ i! (j-i)! ]
= \sum_{j=i}^{iorder} ax_j (x_B - x_A)^(j-i) binom_func(j,i)
Called by:
.. hlist::
:columns: 3
* :c:func:`pol_modif_center`
.. c:function:: primitive_value_explicit:
File : :file:`utils/prim_in_r.irp.f`
.. code:: fortran
double precision function primitive_value_explicit(power_prim,center_prim,alpha,r)
Evaluates at "r" a primitive of type :
(x - center_prim(1))**power_prim(1) (y - center_prim(2))**power_prim(2) * (z - center_prim(3))**power_prim(3)
exp(-alpha * [(x - center_prim(1))**2 + (y - center_prim(2))**2 + (z - center_prim(3))**2] )
.. c:function:: print_memory_usage:
File : :file:`utils/memory.irp.f`
.. code:: fortran
subroutine print_memory_usage()
Prints the memory usage in the output
Called by:
.. hlist::
:columns: 3
* :c:func:`check_mem`
* :c:data:`cholesky_ao_num`
* :c:func:`write_time`
Calls:
.. hlist::
:columns: 3
* :c:func:`resident_memory`
* :c:func:`total_memory`
.. c:function:: randomized_svd:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine randomized_svd(A,LDA,U,LDU,D,Vt,LDVt,m,n,q,r)
Randomized SVD: rank r, q power iterations
1. Sample column space of A with P: Z = A.P where P is random with r+p columns.
2. Power iterations : Z <- X . (Xt.Z)
3. Z = Q.R
4. Compute SVD on projected Qt.X = U' . S. Vt
5. U = Q U'
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`ortho_svd`
* :c:func:`random_number`
* :c:func:`svd`
.. c:function:: recentered_cpoly2:
File : :file:`utils/cgtos_utils.irp.f`
.. code:: fortran
subroutine recentered_cpoly2(P_A, x_A, x_P, a, P_B, x_B, x_Q, b)
write two complex polynomials (x-x_A)^a (x-x_B)^b
as P_A(x-x_P) and P_B(x-x_Q)
Needs:
.. hlist::
:columns: 3
* :c:data:`binom`
Called by:
.. hlist::
:columns: 3
* :c:func:`give_explicit_cpoly_and_cgaussian`
* :c:func:`give_explicit_cpoly_and_cgaussian_x`
.. c:function:: recentered_poly2:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine recentered_poly2(P_new, x_A, x_P, a, Q_new, x_B, x_Q, b)
Recenter two polynomials:
(x - x_A)^a -> \sum_{i=0}^{a} \binom{a}{i} (x_A - x_P)^{a-i} (x - x_P)^i
(x - x_B)^b -> \sum_{i=0}^{b} \binom{b}{i} (x_B - x_Q)^{b-i} (x - x_Q)^i
where:
\binom{a}{i} = \binom{a}{a-i} = a! / [i! (a-i)!]
Needs:
.. hlist::
:columns: 3
* :c:data:`binom`
Called by:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian`
* :c:func:`give_explicit_poly_and_gaussian_x`
.. c:function:: recentered_poly2_v:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine recentered_poly2_v(P_new, lda, x_A, LD_xA, x_P, a, P_new2, ldb, x_B, x_Q, b, n_points)
Recenter two polynomials
Needs:
.. hlist::
:columns: 3
* :c:data:`binom`
Called by:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian_v`
.. c:function:: recentered_poly2_v0:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, n_points)
Recenter two polynomials. Special case for b=(0,0,0)
(x - A)^a (x - B)^0 = (x - P + P - A)^a (x - Q + Q - B)^0
= (x - P + P - A)^a
Needs:
.. hlist::
:columns: 3
* :c:data:`binom`
Called by:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian_v`
.. c:function:: resident_memory:
File : :file:`utils/memory.irp.f`
.. code:: fortran
subroutine resident_memory(value)
Returns the current used memory in gigabytes used by the current process.
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_two_e_integral_alpha_chol`
* :c:func:`check_mem`
* :c:data:`cholesky_ao_num`
* :c:func:`dav_double_dressed`
* :c:func:`davidson_diag_csf_hjj`
* :c:func:`davidson_diag_hjj`
* :c:func:`davidson_diag_hjj_sjj`
* :c:func:`davidson_diag_nonsym_hjj`
* :c:func:`davidson_general`
* :c:func:`davidson_general_diag_dressed_ext_rout_nonsym_b1space`
* :c:func:`davidson_general_ext_rout`
* :c:func:`davidson_general_ext_rout_diag_dressed`
* :c:func:`davidson_general_ext_rout_dressed`
* :c:func:`davidson_general_ext_rout_nonsym_b1space`
* :c:func:`print_memory_usage`
* :c:func:`run_slave_main`
* :c:func:`zmq_pt2`
Calls:
.. hlist::
:columns: 3
* :c:func:`lock_io`
* :c:func:`unlock_io`
* :c:func:`usleep`
.. c:function:: restore_symmetry:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine restore_symmetry(m,n,A,LDA,thresh)
Tries to find the matrix elements that are the same, and sets them
to the average value.
If restore_symm is False, only nullify small elements
Called by:
.. hlist::
:columns: 3
* :c:func:`ao_to_mo`
* :c:func:`create_guess`
* :c:func:`huckel_guess`
* :c:func:`roothaan_hall_scf`
* :c:func:`svd_symm`
Calls:
.. hlist::
:columns: 3
* :c:func:`dset_order`
* :c:func:`dsort`
* :c:func:`iset_order`
.. c:function:: rint:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function rint(n,rho)
.. math::
\int_0^1 dx \exp(-p x^2) x^n
.. c:function:: rint1:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function rint1(n,rho)
Standard version of rint
Needs:
.. hlist::
:columns: 3
* :c:data:`fact_inv`
* :c:data:`inv_int`
.. c:function:: rint_large_n:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function rint_large_n(n,rho)
Version of rint for large values of n
.. c:function:: rint_sum:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function rint_sum(n_pt_out,rho,d1)
Needed for the calculation of two-electron integrals.
.. c:function:: set_multiple_levels_omp:
File : :file:`utils/set_multiple_levels_omp.irp.f`
.. code:: fortran
subroutine set_multiple_levels_omp(activate)
If true, activate OpenMP nested parallelism. If false, deactivate.
Called by:
.. hlist::
:columns: 3
* :c:func:`add_integrals_to_map_cholesky`
* :c:data:`cholesky_ao_num`
* :c:data:`cholesky_mo`
* :c:func:`h_s2_u_0_nstates_zmq`
* :c:func:`h_u_0_nstates_zmq`
* :c:data:`mo_integrals_cache`
* :c:func:`run_slave_cipsi`
* :c:func:`run_slave_main`
* :c:func:`zmq_pt2`
Calls:
.. hlist::
:columns: 3
* :c:func:`omp_set_max_active_levels`
* :c:func:`omp_set_nested`
.. c:function:: set_order:
File : :file:`utils/sort.irp.f_template_90`
.. code:: fortran
subroutine set_order(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
.. c:function:: set_order_big:
File : :file:`utils/sort.irp.f_template_90`
.. code:: fortran
subroutine set_order_big(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: shank:
File : :file:`utils/shank.irp.f`
.. code:: fortran
subroutine shank(array,n,nmax,shank1)
Called by:
.. hlist::
:columns: 3
* :c:func:`shank_general`
.. c:function:: shank_function:
File : :file:`utils/shank.irp.f`
.. code:: fortran
double precision function shank_function(array,i,n)
.. c:function:: shank_general:
File : :file:`utils/shank.irp.f`
.. code:: fortran
double precision function shank_general(array,n,nmax)
Calls:
.. hlist::
:columns: 3
* :c:func:`shank`
.. c:function:: sorted_dnumber:
File : :file:`utils/sort.irp.f_template_32`
.. code:: fortran
subroutine sorted_dnumber(x,isize,n)
Returns the number of sorted elements
.. c:function:: sorted_i2number:
File : :file:`utils/sort.irp.f_template_32`
.. code:: fortran
subroutine sorted_i2number(x,isize,n)
Returns the number of sorted elements
.. c:function:: sorted_i8number:
File : :file:`utils/sort.irp.f_template_32`
.. code:: fortran
subroutine sorted_i8number(x,isize,n)
Returns the number of sorted elements
.. c:function:: sorted_inumber:
File : :file:`utils/sort.irp.f_template_32`
.. code:: fortran
subroutine sorted_inumber(x,isize,n)
Returns the number of sorted elements
.. c:function:: sorted_number:
File : :file:`utils/sort.irp.f_template_32`
.. code:: fortran
subroutine sorted_number(x,isize,n)
Returns the number of sorted elements
.. c:function:: sub_a_at:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine sub_A_At(A, N)
.. c:function:: sum_a_at:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine sum_A_At(A, N)
.. c:function:: svd:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine svd(A,LDA,U,LDU,D,Vt,LDVt,m,n)
Compute A = U.D.Vt
LDx : leftmost dimension of x
Dimension of A is m x n
Called by:
.. hlist::
:columns: 3
* :c:func:`eigsvd`
* :c:func:`mo_as_svd_vectors_of_mo_matrix`
* :c:func:`mo_as_svd_vectors_of_mo_matrix_eig`
* :c:func:`mo_coef_new_as_svd_vectors_of_mo_matrix_eig`
* :c:data:`natorbsci`
* :c:func:`ortho_canonical`
* :c:func:`ortho_lowdin`
* :c:func:`ortho_svd`
* :c:func:`randomized_svd`
* :c:data:`s_half`
* :c:data:`s_half_inv`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgesvd`
.. c:function:: svd_complex:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine svd_complex(A,LDA,U,LDU,D,Vt,LDVt,m,n)
Compute A = U.D.Vt
LDx : leftmost dimension of x
Dimension of A is m x n
A,U,Vt are complex*16
D is double precision
Called by:
.. hlist::
:columns: 3
* :c:func:`ortho_canonical_complex`
* :c:func:`ortho_lowdin_complex`
Calls:
.. hlist::
:columns: 3
* :c:func:`zgesvd`
.. c:function:: svd_symm:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine svd_symm(A,LDA,U,LDU,D,Vt,LDVt,m,n)
Compute A = U.D.Vt
LDx : leftmost dimension of x
Dimension of A is m x n
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`dgesvd`
* :c:func:`restore_symmetry`
.. c:function:: total_memory:
File : :file:`utils/memory.irp.f`
.. code:: fortran
subroutine total_memory(value)
Returns the current used memory in gigabytes used by the current process.
Called by:
.. hlist::
:columns: 3
* :c:func:`print_memory_usage`
Calls:
.. hlist::
:columns: 3
* :c:func:`lock_io`
* :c:func:`unlock_io`
.. c:function:: u_dot_u:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function u_dot_u(u,sze)
Compute <u|u>
.. c:function:: u_dot_v:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function u_dot_v(u,v,sze)
Compute <u|v>
.. c:function:: v2_over_x:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine v2_over_x(v,x,res)
.. c:function:: v_phi:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function V_phi(n, m)
Computes the angular $\phi$ part of the nuclear attraction integral:
$\int_{0}^{2 \pi} \cos(\phi)^n \sin(\phi)^m d\phi$.
.. c:function:: v_theta:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function V_theta(n, m)
Computes the angular $\theta$ part of the nuclear attraction integral:
$\int_{0}^{\pi} \cos(\theta)^n \sin(\theta)^m d\theta$
.. c:function:: wall_time:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine wall_time(t)
The equivalent of cpu_time, but for the wall time.
Called by:
.. hlist::
:columns: 3
* :c:data:`act_2_rdm_aa_mo`
* :c:data:`act_2_rdm_ab_mo`
* :c:data:`act_2_rdm_bb_mo`
* :c:data:`act_2_rdm_spin_trace_mo`
* :c:data:`act_2_rdm_trans_spin_trace_mo`
* :c:func:`add_integrals_to_map`
* :c:func:`add_integrals_to_map_erf`
* :c:data:`ao_pseudo_integrals_local`
* :c:data:`ao_pseudo_integrals_non_local`
* :c:data:`ao_two_e_integrals_erf_in_map`
* :c:data:`ao_two_e_integrals_in_map`
* :c:func:`apply_mo_rotation`
* :c:data:`bielecci`
* :c:data:`bielecci_no`
* :c:data:`cholesky_ao_num`
* :c:data:`cholesky_mo_transp`
* :c:data:`cholesky_no_1_idx_transp`
* :c:data:`cholesky_no_2_idx_transp`
* :c:data:`cholesky_no_total_transp`
* :c:data:`cholesky_semi_mo_transp_simple`
* :c:func:`diag_hessian_list_opt`
* :c:func:`diag_hessian_opt`
* :c:func:`diagonalization_hessian`
* :c:func:`first_diag_hessian_list_opt`
* :c:func:`first_diag_hessian_opt`
* :c:func:`first_hessian_list_opt`
* :c:func:`first_hessian_opt`
* :c:func:`gradient_list_opt`
* :c:func:`gradient_opt`
* :c:func:`hessian_list_opt`
* :c:func:`hessian_opt`
* :c:data:`mo_two_e_integrals_erf_in_map`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`output_wall_time_0`
* :c:func:`pt2_collector`
* :c:func:`rotation_matrix`
* :c:func:`rotation_matrix_iterative`
* :c:func:`run_pt2_slave_large`
* :c:func:`run_pt2_slave_small`
* :c:func:`run_slave_main`
* :c:data:`state_av_act_2_rdm_aa_mo`
* :c:data:`state_av_act_2_rdm_ab_mo`
* :c:data:`state_av_act_2_rdm_bb_mo`
* :c:data:`state_av_act_2_rdm_spin_trace_mo`
* :c:func:`trust_region_expected_e`
* :c:func:`trust_region_optimal_lambda`
* :c:func:`trust_region_step`
* :c:func:`write_time`
Calls:
.. hlist::
:columns: 3
* :c:func:`system_clock`
.. c:function:: wallis:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function Wallis(n)
Wallis integral:
$\int_{0}^{\pi} \cos(\theta)^n d\theta$.
.. c:function:: write_git_log:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine write_git_log(iunit)
Write the last git commit in file iunit.
.. c:function:: zboysfun:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
subroutine zboysfun(n_max, x, vals)
Computes values of the Boys function for n = 0, 1, ..., n_max
for a complex valued argument
Input: x --- argument, complex*16, Re(x) >= 0
Output: vals --- values of the Boys function, n = 0, 1, ..., n_max
Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
https://doi.org/10.1063/5.0062444
Called by:
.. hlist::
:columns: 3
* :c:func:`crint_2`
* :c:func:`crint_2_vec`
Calls:
.. hlist::
:columns: 3
* :c:func:`zboysfun00_2`
.. c:function:: zboysfun00_1:
File : :file:`utils/cpx_erf.irp.f`
.. code:: fortran
subroutine zboysfun00_1(rho, F0)
Called by:
.. hlist::
:columns: 3
* :c:func:`crint_1`
* :c:func:`crint_1_vec`
.. c:function:: zboysfun00_2:
File : :file:`utils/cpx_erf.irp.f`
.. code:: fortran
subroutine zboysfun00_2(z, val)
Computes values of the Boys function for n=0
for a complex valued argument
Input: z --- argument, complex*16, Real(z) >= 0
Output: val --- value of the Boys function n=0
Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
https://doi.org/10.1063/5.0062444
Called by:
.. hlist::
:columns: 3
* :c:func:`zboysfun`
.. c:function:: zboysfun00nrp:
File : :file:`utils/cpx_erf.irp.f`
.. code:: fortran
subroutine zboysfun00nrp(z, val)
Computes values of the exp(z) F(0,z)
(where F(0,z) is the Boys function)
for a complex valued argument with Real(z)<=0
Input: z --- argument, complex*16, !!! Real(z)<=0 !!!
Output: val --- value of the function !!! exp(z) F(0,z) !!!, where F(0,z) is the Boys function
Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
https://doi.org/10.1063/5.0062444
Called by:
.. hlist::
:columns: 3
* :c:func:`zboysfunnrp`
.. c:function:: zboysfunnrp:
File : :file:`utils/cpx_boys.irp.f`
.. code:: fortran
subroutine zboysfunnrp(n_max, x, vals)
Computes values of e^z F(n,z) for n = 0, 1, ..., n_max
(where F(n,z) are the Boys functions)
for a complex valued argument WITH NEGATIVE REAL PART
Input: x --- argument, complex *16 Re(x)<=0
Output: vals --- values of e^z F(n,z), n = 0, 1, ..., n_max
Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
https://doi.org/10.1063/5.0062444
Called by:
.. hlist::
:columns: 3
* :c:func:`crint_2`
* :c:func:`crint_2_vec`
Calls:
.. hlist::
:columns: 3
* :c:func:`zboysfun00nrp`