9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-08 06:23:37 +01:00
qp2/src/dft_utils_one_e/sr_pot_ao_lda.irp.f
2019-02-11 17:04:44 +01:00

80 lines
3.6 KiB
Fortran

BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_LDA_w, (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_LDA_w, (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_sr_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (sr_v^x_alpha(r_j) + sr_v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j
double precision :: r(3)
double precision :: mu,weight
double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b
double precision, allocatable :: rhoa(:),rhob(:)
allocate(rhoa(N_states), rhob(N_states))
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
rhob(istate) = one_e_dm_beta_at_r(i,istate)
call ec_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b)
call ex_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b)
do j =1, ao_num
aos_sr_vc_alpha_LDA_w(j,i,istate) = sr_vc_a * aos_in_r_array(j,i)*weight
aos_sr_vc_beta_LDA_w(j,i,istate) = sr_vc_b * aos_in_r_array(j,i)*weight
aos_sr_vx_alpha_LDA_w(j,i,istate) = sr_vx_a * aos_in_r_array(j,i)*weight
aos_sr_vx_beta_LDA_w(j,i,istate) = sr_vx_b * aos_in_r_array(j,i)*weight
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_sr_x_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_x_beta_ao_LDA,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range exchange alpha/beta potentials with LDA functional on the |AO| basis
END_DOC
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
integer :: istate
do istate = 1, N_states
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vx_alpha_LDA_w,size(aos_sr_vx_alpha_LDA_w,1),0.d0,&
potential_sr_x_alpha_ao_LDA,size(potential_sr_x_alpha_ao_LDA,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vx_beta_LDA_w(1,1,istate),size(aos_sr_vx_beta_LDA_w,1),0.d0,&
potential_sr_x_beta_ao_LDA(1,1,istate),size(potential_sr_x_beta_ao_LDA,1))
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_sr_c_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_c_beta_ao_LDA,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range correlation alpha/beta potentials with LDA functional on the |AO| basis
END_DOC
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
integer :: istate
do istate = 1, N_states
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vc_alpha_LDA_w(1,1,istate),size(aos_sr_vc_alpha_LDA_w,1),0.d0,&
potential_sr_c_alpha_ao_LDA(1,1,istate),size(potential_sr_c_alpha_ao_LDA,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vc_beta_LDA_w(1,1,istate),size(aos_sr_vc_beta_LDA_w,1),0.d0,&
potential_sr_c_beta_ao_LDA(1,1,istate),size(potential_sr_c_beta_ao_LDA,1))
enddo
END_PROVIDER