mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-08 06:23:37 +01:00
84 lines
3.5 KiB
Fortran
84 lines
3.5 KiB
Fortran
|
|
BEGIN_PROVIDER[double precision, aos_vc_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vc_beta_LDA_w, (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vx_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)]
|
|
&BEGIN_PROVIDER[double precision, aos_vx_beta_LDA_w, (ao_num,n_points_final_grid,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! aos_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
|
END_DOC
|
|
integer :: istate,i,j
|
|
double precision :: r(3)
|
|
double precision :: mu,weight
|
|
double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b
|
|
double precision, allocatable :: rhoa(:),rhob(:)
|
|
double precision :: mu_local
|
|
mu_local = 1.d-9
|
|
allocate(rhoa(N_states), rhob(N_states))
|
|
do istate = 1, N_states
|
|
do i = 1, n_points_final_grid
|
|
r(1) = final_grid_points(1,i)
|
|
r(2) = final_grid_points(2,i)
|
|
r(3) = final_grid_points(3,i)
|
|
weight = final_weight_at_r_vector(i)
|
|
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
|
|
rhob(istate) = one_e_dm_beta_at_r(i,istate)
|
|
call ec_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
|
|
call ex_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
|
|
do j =1, ao_num
|
|
aos_vc_alpha_LDA_w(j,i,istate) = vc_a * aos_in_r_array(j,i)*weight
|
|
aos_vc_beta_LDA_w(j,i,istate) = vc_b * aos_in_r_array(j,i)*weight
|
|
aos_vx_alpha_LDA_w(j,i,istate) = vx_a * aos_in_r_array(j,i)*weight
|
|
aos_vx_beta_LDA_w(j,i,istate) = vx_b * aos_in_r_array(j,i)*weight
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_LDA,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_LDA,(ao_num,ao_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! short range exchange alpha/beta potentials with LDA functional on the |AO| basis
|
|
END_DOC
|
|
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
|
|
integer :: istate
|
|
do istate = 1, N_states
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_in_r_array,size(aos_in_r_array,1), &
|
|
aos_vx_alpha_LDA_w(1,1,istate),size(aos_vx_alpha_LDA_w,1),0.d0,&
|
|
potential_x_alpha_ao_LDA(1,1,istate),size(potential_x_alpha_ao_LDA,1))
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_in_r_array,size(aos_in_r_array,1), &
|
|
aos_vx_beta_LDA_w(1,1,istate),size(aos_vx_beta_LDA_w,1),0.d0,&
|
|
potential_x_beta_ao_LDA(1,1,istate),size(potential_x_beta_ao_LDA,1))
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, potential_c_alpha_ao_LDA,(ao_num,ao_num,N_states)]
|
|
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_LDA,(ao_num,ao_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! short range correlation alpha/beta potentials with LDA functional on the |AO| basis
|
|
END_DOC
|
|
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
|
|
integer :: istate
|
|
do istate = 1, N_states
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_in_r_array,size(aos_in_r_array,1), &
|
|
aos_vc_alpha_LDA_w(1,1,istate),size(aos_vc_alpha_LDA_w,1),0.d0,&
|
|
potential_c_alpha_ao_LDA(1,1,istate),size(potential_c_alpha_ao_LDA,1))
|
|
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
|
aos_in_r_array,size(aos_in_r_array,1), &
|
|
aos_vc_beta_LDA_w(1,1,istate),size(aos_vc_beta_LDA_w,1),0.d0,&
|
|
potential_c_beta_ao_LDA(1,1,istate),size(potential_c_beta_ao_LDA,1))
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|