mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-04-25 17:54:44 +02:00
146 lines
5.5 KiB
Fortran
146 lines
5.5 KiB
Fortran
double precision function ao_two_e_integral_mixed_direct(i, j, k, l)
|
|
|
|
BEGIN_DOC
|
|
! integral of the AO basis <ik|jl> or (ij|kl)
|
|
! i(r1) j(r1) 1/r12 k(r2) l(r2)
|
|
! A A B B
|
|
!
|
|
! where i,j belong to the REGULAR AO basis (system A) and k,l to the EXTRA basis (system B)
|
|
END_DOC
|
|
|
|
implicit none
|
|
include 'utils/constants.include.F'
|
|
|
|
integer, intent(in) :: i, j, k, l
|
|
|
|
integer :: p, q, r, s
|
|
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
|
|
integer :: iorder_p(3), iorder_q(3)
|
|
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
|
double precision :: integral
|
|
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
|
|
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
|
|
double precision :: general_primitive_integral
|
|
|
|
dim1 = n_pt_max_integrals
|
|
|
|
num_i = ao_nucl(i)
|
|
num_j = ao_nucl(j)
|
|
num_k = ao_extra_nucl(k)
|
|
num_l = ao_extra_nucl(l)
|
|
ao_two_e_integral_mixed_direct = 0.d0
|
|
|
|
do p = 1, 3
|
|
I_power(p) = ao_power(i,p)
|
|
J_power(p) = ao_power(j,p)
|
|
K_power(p) = ao_extra_power(k,p)
|
|
L_power(p) = ao_extra_power(l,p)
|
|
I_center(p) = nucl_coord(num_i,p)
|
|
J_center(p) = nucl_coord(num_j,p)
|
|
K_center(p) = extra_nucl_coord(num_k,p)
|
|
L_center(p) = extra_nucl_coord(num_l,p)
|
|
enddo
|
|
|
|
double precision :: coef1, coef2, coef3, coef4
|
|
double precision :: p_inv,q_inv
|
|
|
|
do p = 1, ao_prim_num(i)
|
|
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
|
do q = 1, ao_prim_num(j)
|
|
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
|
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
|
|
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
|
|
I_power,J_power,I_center,J_center,dim1)
|
|
p_inv = 1.d0/pp
|
|
do r = 1, ao_extra_prim_num(k)
|
|
coef3 = coef2*ao_extra_coef_normalized_ordered_transp(r,k)
|
|
do s = 1, ao_extra_prim_num(l)
|
|
coef4 = coef3*ao_extra_coef_normalized_ordered_transp(s,l)
|
|
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
|
ao_extra_expo_ordered_transp(r,k),ao_extra_expo_ordered_transp(s,l), &
|
|
K_power,L_power,K_center,L_center,dim1)
|
|
q_inv = 1.d0/qq
|
|
integral = general_primitive_integral(dim1, &
|
|
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
|
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
|
ao_two_e_integral_mixed_direct = ao_two_e_integral_mixed_direct + coef4 * integral
|
|
enddo ! s
|
|
enddo ! r
|
|
enddo ! q
|
|
enddo ! p
|
|
|
|
end
|
|
|
|
double precision function ao_two_e_integral_mixed_exchange(i, j, k, l)
|
|
|
|
BEGIN_DOC
|
|
! integral of the AO basis <ik|jl> or (ij|kl)
|
|
! i(r1) j(r1) 1/r12 k(r2) l(r2)
|
|
! A B A B
|
|
!
|
|
! where i,k belong to the REGULAR AO basis (system A) and j,l to the EXTRA basis (system B)
|
|
END_DOC
|
|
|
|
implicit none
|
|
include 'utils/constants.include.F'
|
|
|
|
integer, intent(in) :: i, j, k, l
|
|
|
|
integer :: p, q, r, s
|
|
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
|
|
integer :: iorder_p(3), iorder_q(3)
|
|
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
|
double precision :: integral
|
|
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
|
|
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
|
|
double precision :: general_primitive_integral
|
|
|
|
dim1 = n_pt_max_integrals
|
|
|
|
num_i = ao_nucl(i)
|
|
num_j = ao_extra_nucl(j)
|
|
num_k = ao_nucl(k)
|
|
num_l = ao_extra_nucl(l)
|
|
ao_two_e_integral_mixed_exchange = 0.d0
|
|
|
|
do p = 1, 3
|
|
I_power(p) = ao_power(i,p)
|
|
J_power(p) = ao_extra_power(j,p)
|
|
K_power(p) = ao_power(k,p)
|
|
L_power(p) = ao_extra_power(l,p)
|
|
I_center(p) = nucl_coord(num_i,p)
|
|
J_center(p) = extra_nucl_coord(num_j,p)
|
|
K_center(p) = nucl_coord(num_k,p)
|
|
L_center(p) = extra_nucl_coord(num_l,p)
|
|
enddo
|
|
|
|
double precision :: coef1, coef2, coef3, coef4
|
|
double precision :: p_inv,q_inv
|
|
|
|
do p = 1, ao_prim_num(i)
|
|
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
|
do q = 1, ao_extra_prim_num(j)
|
|
coef2 = coef1*ao_extra_coef_normalized_ordered_transp(q,j)
|
|
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
|
|
ao_expo_ordered_transp(p,i),ao_extra_expo_ordered_transp(q,j), &
|
|
I_power,J_power,I_center,J_center,dim1)
|
|
p_inv = 1.d0/pp
|
|
do r = 1, ao_prim_num(k)
|
|
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
|
do s = 1, ao_extra_prim_num(l)
|
|
coef4 = coef3*ao_extra_coef_normalized_ordered_transp(s,l)
|
|
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
|
ao_expo_ordered_transp(r,k),ao_extra_expo_ordered_transp(s,l), &
|
|
K_power,L_power,K_center,L_center,dim1)
|
|
q_inv = 1.d0/qq
|
|
integral = general_primitive_integral(dim1, &
|
|
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
|
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
|
ao_two_e_integral_mixed_exchange = ao_two_e_integral_mixed_exchange + coef4 * integral
|
|
enddo ! s
|
|
enddo ! r
|
|
enddo ! q
|
|
enddo ! p
|
|
|
|
end
|