mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-12 02:38:31 +02:00
280 lines
9.7 KiB
Fortran
280 lines
9.7 KiB
Fortran
|
|
BEGIN_PROVIDER [ double precision, ao_two_e_integral_alpha, (ao_num, ao_num) ]
|
|
&BEGIN_PROVIDER [ double precision, ao_two_e_integral_beta , (ao_num, ao_num) ]
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Alpha and Beta Fock matrices in AO basis set
|
|
END_DOC
|
|
|
|
integer :: i,j,k,l,k1,r,s
|
|
integer :: i0,j0,k0,l0
|
|
integer*8 :: p,q
|
|
double precision :: integral, c0, c1, c2
|
|
double precision :: ao_two_e_integral, local_threshold
|
|
double precision, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
|
|
double precision, allocatable :: ao_two_e_integral_beta_tmp(:,:)
|
|
|
|
if (do_ao_cholesky) then ! Use Cholesky-decomposed integrals
|
|
ao_two_e_integral_alpha(:,:) = ao_two_e_integral_alpha_chol(:,:)
|
|
ao_two_e_integral_beta (:,:) = ao_two_e_integral_beta_chol (:,:)
|
|
|
|
else ! Use integrals in AO basis set
|
|
|
|
ao_two_e_integral_alpha = 0.d0
|
|
ao_two_e_integral_beta = 0.d0
|
|
if (do_direct_integrals) then
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,keys,values,p,q,r,s,i0,j0,k0,l0,&
|
|
!$OMP ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, c0, c1, c2,&
|
|
!$OMP local_threshold) &
|
|
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
|
|
!$OMP ao_integrals_map,ao_integrals_threshold, ao_two_e_integral_schwartz,&
|
|
!$OMP ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
|
|
|
allocate(keys(1), values(1))
|
|
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
|
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
|
ao_two_e_integral_alpha_tmp = 0.d0
|
|
ao_two_e_integral_beta_tmp = 0.d0
|
|
|
|
q = ao_num*ao_num*ao_num*ao_num
|
|
!$OMP DO SCHEDULE(static,64)
|
|
do p=1_8,q
|
|
call two_e_integrals_index_reverse(kk,ii,ll,jj,p)
|
|
if ( (kk(1)>ao_num).or. &
|
|
(ii(1)>ao_num).or. &
|
|
(jj(1)>ao_num).or. &
|
|
(ll(1)>ao_num) ) then
|
|
cycle
|
|
endif
|
|
k = kk(1)
|
|
i = ii(1)
|
|
l = ll(1)
|
|
j = jj(1)
|
|
|
|
logical, external :: ao_two_e_integral_zero
|
|
if (ao_two_e_integral_zero(i,k,j,l)) then
|
|
cycle
|
|
endif
|
|
local_threshold = ao_two_e_integral_schwartz(k,l)*ao_two_e_integral_schwartz(i,j)
|
|
if (local_threshold < ao_integrals_threshold) then
|
|
cycle
|
|
endif
|
|
i0 = i
|
|
j0 = j
|
|
k0 = k
|
|
l0 = l
|
|
values(1) = 0.d0
|
|
local_threshold = ao_integrals_threshold/local_threshold
|
|
do k2=1,8
|
|
if (kk(k2)==0) then
|
|
cycle
|
|
endif
|
|
i = ii(k2)
|
|
j = jj(k2)
|
|
k = kk(k2)
|
|
l = ll(k2)
|
|
c0 = SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)
|
|
c1 = SCF_density_matrix_ao_alpha(k,i)
|
|
c2 = SCF_density_matrix_ao_beta(k,i)
|
|
if ( dabs(c0)+dabs(c1)+dabs(c2) < local_threshold) then
|
|
cycle
|
|
endif
|
|
if (values(1) == 0.d0) then
|
|
values(1) = ao_two_e_integral(k0,l0,i0,j0)
|
|
endif
|
|
integral = c0 * values(1)
|
|
ao_two_e_integral_alpha_tmp(i,j) += integral
|
|
ao_two_e_integral_beta_tmp (i,j) += integral
|
|
integral = values(1)
|
|
ao_two_e_integral_alpha_tmp(l,j) -= c1 * integral
|
|
ao_two_e_integral_beta_tmp (l,j) -= c2 * integral
|
|
enddo
|
|
enddo
|
|
!$OMP END DO NOWAIT
|
|
!$OMP CRITICAL
|
|
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
|
|
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
|
|
!$OMP END CRITICAL
|
|
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
|
!$OMP END PARALLEL
|
|
else
|
|
PROVIDE ao_two_e_integrals_in_map
|
|
|
|
integer(omp_lock_kind) :: lck(ao_num)
|
|
integer(map_size_kind) :: i8
|
|
integer :: ii(8), jj(8), kk(8), ll(8), k2
|
|
integer(cache_map_size_kind) :: n_elements_max, n_elements
|
|
integer(key_kind), allocatable :: keys(:)
|
|
double precision, allocatable :: values(:)
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max,&
|
|
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)&
|
|
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
|
|
!$OMP ao_integrals_map, ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
|
|
|
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
|
|
allocate(keys(n_elements_max), values(n_elements_max))
|
|
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
|
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
|
ao_two_e_integral_alpha_tmp = 0.d0
|
|
ao_two_e_integral_beta_tmp = 0.d0
|
|
|
|
!$OMP DO SCHEDULE(static,1)
|
|
do i8=0_8,ao_integrals_map%map_size
|
|
n_elements = n_elements_max
|
|
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
|
|
do k1=1,n_elements
|
|
call two_e_integrals_index_reverse(kk,ii,ll,jj,keys(k1))
|
|
|
|
do k2=1,8
|
|
if (kk(k2)==0) then
|
|
cycle
|
|
endif
|
|
i = ii(k2)
|
|
j = jj(k2)
|
|
k = kk(k2)
|
|
l = ll(k2)
|
|
integral = (SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)) * values(k1)
|
|
ao_two_e_integral_alpha_tmp(i,j) += integral
|
|
ao_two_e_integral_beta_tmp (i,j) += integral
|
|
integral = values(k1)
|
|
ao_two_e_integral_alpha_tmp(l,j) -= SCF_density_matrix_ao_alpha(k,i) * integral
|
|
ao_two_e_integral_beta_tmp (l,j) -= SCF_density_matrix_ao_beta (k,i) * integral
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END DO NOWAIT
|
|
!$OMP CRITICAL
|
|
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
|
|
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
|
|
!$OMP END CRITICAL
|
|
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
|
!$OMP END PARALLEL
|
|
|
|
endif
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, ao_two_e_integral_alpha_chol, (ao_num, ao_num) ]
|
|
&BEGIN_PROVIDER [ double precision, ao_two_e_integral_beta_chol , (ao_num, ao_num) ]
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Alpha and Beta Fock matrices in AO basis set
|
|
END_DOC
|
|
|
|
integer :: m,n,l,s,j
|
|
double precision :: integral
|
|
double precision, allocatable :: X(:), X2(:,:,:,:), X3(:,:,:,:)
|
|
|
|
allocate (X(cholesky_ao_num))
|
|
|
|
! X(j) = \sum_{mn} SCF_density_matrix_ao(m,n) * cholesky_ao(m,n,j)
|
|
call dgemm('T','N',cholesky_ao_num,1,ao_num*ao_num,1.d0, &
|
|
cholesky_ao, ao_num*ao_num, &
|
|
SCF_density_matrix_ao, ao_num*ao_num,0.d0, &
|
|
X, cholesky_ao_num)
|
|
!
|
|
|
|
! ao_two_e_integral_alpha(m,n) = \sum_{j} cholesky_ao(m,n,j) * X(j)
|
|
call dgemm('N','N',ao_num*ao_num,1,cholesky_ao_num, 1.d0, &
|
|
cholesky_ao, ao_num*ao_num, &
|
|
X, cholesky_ao_num, 0.d0, &
|
|
ao_two_e_integral_alpha_chol, ao_num*ao_num)
|
|
|
|
deallocate(X)
|
|
|
|
if (elec_alpha_num > elec_beta_num) then
|
|
ao_two_e_integral_beta_chol = ao_two_e_integral_alpha_chol
|
|
endif
|
|
|
|
|
|
double precision :: rss
|
|
double precision :: memory_of_double
|
|
|
|
integer :: iblock
|
|
integer, parameter :: block_size = 32
|
|
|
|
rss = memory_of_double(ao_num*ao_num)
|
|
call check_mem(2.d0*block_size*rss, irp_here)
|
|
allocate(X2(ao_num,ao_num,block_size,2))
|
|
allocate(X3(ao_num,block_size,ao_num,2))
|
|
|
|
! ao_two_e_integral_alpha_chol (l,s) -= cholesky_ao(l,m,j) * SCF_density_matrix_ao_beta (m,n) * cholesky_ao(n,s,j)
|
|
|
|
do iblock=1,cholesky_ao_num,block_size
|
|
|
|
call dgemm('N','N',ao_num,ao_num*min(cholesky_ao_num-iblock+1,block_size),ao_num, 1.d0, &
|
|
SCF_density_matrix_ao_alpha, ao_num, &
|
|
cholesky_ao(1,1,iblock), ao_num, 0.d0, &
|
|
X2(1,1,1,1), ao_num)
|
|
|
|
if (elec_alpha_num > elec_beta_num) then
|
|
call dgemm('N','N',ao_num,ao_num*min(cholesky_ao_num-iblock+1,block_size),ao_num, 1.d0, &
|
|
SCF_density_matrix_ao_beta, ao_num, &
|
|
cholesky_ao(1,1,iblock), ao_num, 0.d0, &
|
|
X2(1,1,1,2), ao_num)
|
|
|
|
do s=1,ao_num
|
|
do j=1,min(cholesky_ao_num-iblock+1,block_size)
|
|
do m=1,ao_num
|
|
X3(m,j,s,1) = X2(m,s,j,1)
|
|
X3(m,j,s,2) = X2(m,s,j,2)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
else
|
|
|
|
do s=1,ao_num
|
|
do j=1,min(cholesky_ao_num-iblock+1,block_size)
|
|
do m=1,ao_num
|
|
X3(m,j,s,1) = X2(m,s,j,1)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
call dgemm('N','N',ao_num,ao_num,ao_num*min(cholesky_ao_num-iblock+1,block_size), -1.d0, &
|
|
cholesky_ao(1,1,iblock), ao_num, &
|
|
X3(1,1,1,1), ao_num*block_size, 1.d0, &
|
|
ao_two_e_integral_alpha_chol, ao_num)
|
|
|
|
if (elec_alpha_num > elec_beta_num) then
|
|
call dgemm('N','N',ao_num,ao_num,ao_num*min(cholesky_ao_num-iblock+1,block_size), -1.d0, &
|
|
cholesky_ao(1,1,iblock), ao_num, &
|
|
X3(1,1,1,2), ao_num*block_size, 1.d0, &
|
|
ao_two_e_integral_beta_chol, ao_num)
|
|
endif
|
|
|
|
enddo
|
|
|
|
if (elec_alpha_num == elec_beta_num) then
|
|
ao_two_e_integral_beta_chol = ao_two_e_integral_alpha_chol
|
|
endif
|
|
deallocate(X2,X3)
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, Fock_matrix_ao_alpha, (ao_num, ao_num) ]
|
|
&BEGIN_PROVIDER [ double precision, Fock_matrix_ao_beta, (ao_num, ao_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Alpha Fock matrix in AO basis set
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
do j=1,ao_num
|
|
do i=1,ao_num
|
|
Fock_matrix_ao_alpha(i,j) = ao_one_e_integrals(i,j) + ao_two_e_integral_alpha(i,j)
|
|
Fock_matrix_ao_beta (i,j) = ao_one_e_integrals(i,j) + ao_two_e_integral_beta (i,j)
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|