qp2/src/cipsi/selection.irp.f

3645 lines
125 KiB
Fortran

use bitmasks
BEGIN_PROVIDER [ double precision, pt2_match_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights adjusted along the selection to make the PT2 contributions
! of each state coincide.
END_DOC
pt2_match_weight(:) = 1.d0
END_PROVIDER
BEGIN_PROVIDER [ double precision, variance_match_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights adjusted along the selection to make the variances
! of each state coincide.
END_DOC
variance_match_weight(:) = 1.d0
END_PROVIDER
subroutine update_pt2_and_variance_weights(pt2_data, N_st)
implicit none
use selection_types
BEGIN_DOC
! Updates the PT2- and Variance- matching weights.
END_DOC
integer, intent(in) :: N_st
type(pt2_type), intent(in) :: pt2_data
double precision :: pt2(N_st)
double precision :: variance(N_st)
double precision :: avg, element, dt, x
integer :: k
integer, save :: i_iter=0
integer, parameter :: i_itermax = 1
double precision, allocatable, save :: memo_variance(:,:), memo_pt2(:,:)
pt2(:) = pt2_data % pt2(:)
variance(:) = pt2_data % variance(:)
if (i_iter == 0) then
allocate(memo_variance(N_st,i_itermax), memo_pt2(N_st,i_itermax))
memo_pt2(:,:) = 1.d0
memo_variance(:,:) = 1.d0
endif
i_iter = i_iter+1
if (i_iter > i_itermax) then
i_iter = 1
endif
dt = 2.0d0
avg = sum(pt2(1:N_st)) / dble(N_st) - 1.d-32 ! Avoid future division by zero
do k=1,N_st
element = exp(dt*(pt2(k)/avg -1.d0))
element = min(2.0d0 , element)
element = max(0.5d0 , element)
memo_pt2(k,i_iter) = element
pt2_match_weight(k) *= product(memo_pt2(k,:))
enddo
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
do k=1,N_st
element = exp(dt*(variance(k)/avg -1.d0))
element = min(2.0d0 , element)
element = max(0.5d0 , element)
memo_variance(k,i_iter) = element
variance_match_weight(k) *= product(memo_variance(k,:))
enddo
if (N_det < 100) then
! For tiny wave functions, weights are 1.d0
pt2_match_weight(:) = 1.d0
variance_match_weight(:) = 1.d0
endif
threshold_davidson_pt2 = min(1.d-6, &
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
SOFT_TOUCH pt2_match_weight variance_match_weight threshold_davidson_pt2
end
BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights used in the selection criterion
END_DOC
select case (weight_selection)
case (0)
print *, 'Using input weights in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * state_average_weight(1:N_states)
case (1)
print *, 'Using 1/c_max^2 weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states)
case (2)
print *, 'Using pt2-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
case (3)
print *, 'Using variance-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
case (4)
print *, 'Using variance- and pt2-matching weights in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states))
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4)
case (5)
print *, 'Using variance-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
case (6)
print *, 'Using CI coefficient-based selection'
selection_weight(1:N_states) = c0_weight(1:N_states)
case (7)
print *, 'Input weights multiplied by variance- and pt2-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)) * state_average_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4)
case (8)
print *, 'Input weights multiplied by pt2-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states) * state_average_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
case (9)
print *, 'Input weights multiplied by variance-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states) * state_average_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
end select
print *, '# Total weight ', real(selection_weight(:),4)
END_PROVIDER
BEGIN_PROVIDER [ double precision, selection_weight_mat, (N_states,N_states) ]
implicit none
BEGIN_DOC
! Weights used in the selection criterion
END_DOC
integer :: istate,jstate
do jstate=1,N_states
do istate=1,N_states
selection_weight_mat(istate,jstate) = dsqrt(selection_weight(istate)*selection_weight(jstate))
enddo
enddo
END_PROVIDER
subroutine get_mask_phase(det1, pm, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(out) :: pm(Nint,2)
integer(bit_kind) :: tmp1, tmp2
integer :: i
pm(1:Nint,1:2) = det1(1:Nint,1:2)
tmp1 = 0_8
tmp2 = 0_8
do i=1,Nint
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 1))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 1))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
pm(i,1) = ieor(pm(i,1), tmp1)
pm(i,2) = ieor(pm(i,2), tmp2)
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
end do
end subroutine
subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
!todo: simplify for kpts
use bitmasks
use selection_types
implicit none
integer, intent(in) :: i_generator, subset, csubset
type(selection_buffer), intent(inout) :: b
type(pt2_type), intent(inout) :: pt2_data
integer :: k,l
double precision, intent(in) :: E0(N_states)
integer(bit_kind) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, allocatable :: fock_diag_tmp(:,:)
allocate(fock_diag_tmp(2,mo_num+1))
call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int)
! possible holes and particles for this generator
! hole_mask: occupied in this generator .AND. occupied in generators_bitmask_hole
! part_mask: unoccupied in this generator .AND. occupied in generators_bitmask_part
do k=1,N_int
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole), psi_det_generators(k,1,i_generator))
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole), psi_det_generators(k,2,i_generator))
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
enddo
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset)
deallocate(fock_diag_tmp)
end subroutine
double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: phasemask(Nint,2)
integer, intent(in) :: s1, s2, h1, h2, p1, p2
logical :: change
integer :: np
double precision, save :: res(0:1) = (/1d0, -1d0/)
integer :: h1_int, h2_int
integer :: p1_int, p2_int
integer :: h1_bit, h2_bit
integer :: p1_bit, p2_bit
h1_int = shiftr(h1-1,bit_kind_shift)+1
h1_bit = h1 - shiftl(h1_int-1,bit_kind_shift)-1
h2_int = shiftr(h2-1,bit_kind_shift)+1
h2_bit = h2 - shiftl(h2_int-1,bit_kind_shift)-1
p1_int = shiftr(p1-1,bit_kind_shift)+1
p1_bit = p1 - shiftl(p1_int-1,bit_kind_shift)-1
p2_int = shiftr(p2-1,bit_kind_shift)+1
p2_bit = p2 - shiftl(p2_int-1,bit_kind_shift)-1
! Put the phasemask bits at position 0, and add them all
h1_bit = int(shiftr(phasemask(h1_int,s1),h1_bit))
p1_bit = int(shiftr(phasemask(p1_int,s1),p1_bit))
h2_bit = int(shiftr(phasemask(h2_int,s2),h2_bit))
p2_bit = int(shiftr(phasemask(p2_int,s2),p2_bit))
np = h1_bit + p1_bit + h2_bit + p2_bit
if(p1 < h1) np = np + 1
if(p2 < h2) np = np + 1
if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1
get_phase_bi = res(iand(np,1))
end
subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,buf,subset,csubset)
use bitmasks
use selection_types
implicit none
BEGIN_DOC
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted
END_DOC
integer, intent(in) :: i_generator, subset, csubset
integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf
integer :: h1,h2,s1,s2,s3,i1,i2,ib,sp,k,i,j,nt,ii,sze
integer :: kh1,kh2,kpt12,kk1,kk2,ik01,ik02,ik1,ik2
integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2), pmask(N_int, 2)
logical :: fullMatch, ok
integer(bit_kind) :: mobMask(N_int, 2), negMask(N_int, 2)
integer,allocatable :: preinteresting(:), prefullinteresting(:)
integer,allocatable :: interesting(:), fullinteresting(:)
integer,allocatable :: tmp_array(:)
integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :)
logical, allocatable :: banned(:,:,:), bannedOrb(:,:)
double precision, allocatable :: coef_fullminilist_rev(:,:)
complex*16, allocatable :: coef_fullminilist_rev_complex(:,:)
double precision, allocatable :: mat(:,:,:)
complex*16, allocatable :: mat_complex(:,:,:)
logical :: monoAdo, monoBdo
integer :: maskInd
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order
if (is_complex) then
PROVIDE psi_selectors_coef_transp_complex
else
PROVIDE psi_selectors_coef_transp
endif
monoAdo = .true.
monoBdo = .true.
!todo: this is already done in select_connected? why repeat?
do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
hole (k,2) = iand(psi_det_generators(k,2,i_generator), hole_mask(k,2))
particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), particle_mask(k,1))
particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), particle_mask(k,2))
enddo
integer :: N_holes(2), N_particles(2)
integer :: hole_list(N_int*bit_kind_size,2)
integer :: particle_list(N_int*bit_kind_size,2)
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
integer :: l_a, nmax, idx
integer, allocatable :: indices(:), exc_degree(:), iorder(:)
allocate (indices(N_det), &
exc_degree(max(N_det_alpha_unique,N_det_beta_unique)))
! S_s = selectors
! S_0 = {|D_G>} (i_generator determinant)
! S_j = {|D_k> : |D_k> \in T_j|D_G> } (i.e. S_2 is all dets connected to |D_G> by a double excitation)
! S_2b = S_2 \intersection {|D_k> : a_{h1}|D_k> != 0} (in S_2 and h1 is occupied)
! S_2' = S_2 \ {|D_k> : a_{h1}|D_k> != 0} (in S_2 and h1 is not occupied)
! S_4b = S_4 \intersection {|D_k> : a_{h1}|D_k> != 0} (in S_4 and h1 is occupied)
! S_4' = S_4 \ {|D_k> : a_{h1}|D_k> != 0} (in S_4 and h1 is not occupied)
! construct the following sets of determinants:
! preinteresting: S_pi = (U_{j=0..4} S_j) \intersection S_s
! prefullinteresting: S_pfi = (U_{j=0..2} S_j) \ S_s
! interesting: S_i = S_pi \ S_4b = ( (U_{j=0..3} S_j) U S_4' ) \intersection S_s
! fullinteresting: S_fi = S_i U (S_pfi \ S_2b) = (S_0 U S_1 U S_2')
! (in order, first elements are in S_s, later elements are not in S_s)
! get indices of all unique dets for which total excitation degree (relative to i_generator) is <= 4
k=1
! get exc_degree(i) for each unique alpha det(i) from i_generator(alpha)
do i=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,i), &
psi_det_generators(1,1,i_generator), exc_degree(i), N_int)
enddo
! get exc_degree (= nt) for each unique beta det(j) from i_generator(beta)
do j=1,N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,j), &
psi_det_generators(1,2,i_generator), nt, N_int)
if (nt > 2) cycle ! don't keep anything more than double beta exc
do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1
i = psi_bilinear_matrix_rows(l_a)
if (nt + exc_degree(i) <= 4) then ! don't keep anything more than 4-fold total exc
idx = psi_det_sorted_order(psi_bilinear_matrix_order(l_a))
if (psi_average_norm_contrib_sorted(idx) > 1.d-20) then
indices(k) = idx
k=k+1
endif
endif
enddo
enddo
! indices now contains det indices (in psi_det_sorted) of dets which differ from generator by:
! (exc_alpha,exc_beta) in
! (4,0)
! (3,0), (3,1)
! (2,0), (2,1), (2,2)
! (1,0), (1,1), (1,2)
! (0,0), (0,1), (0,2)
!
! (4,0)
! (3,0), (3,1)
! (2,0), (2,1), (2,2)
! (1,0), (1,1), (1,2)
! (0,0), (0,1), (0,2)
!
! below, add (0,3), (0,4), (1,3)
do i=1,N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,i), &
psi_det_generators(1,2,i_generator), exc_degree(i), N_int)
enddo
do j=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,j), &
psi_det_generators(1,1,i_generator), nt, N_int)
if (nt > 1) cycle
do l_a=psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1
i = psi_bilinear_matrix_transp_columns(l_a)
if (exc_degree(i) < 3) cycle
if (nt + exc_degree(i) <= 4) then
idx = psi_det_sorted_order( &
psi_bilinear_matrix_order( &
psi_bilinear_matrix_transp_order(l_a)))
if (psi_average_norm_contrib_sorted(idx) > 1.d-20) then
indices(k) = idx
k=k+1
endif
endif
enddo
enddo
deallocate(exc_degree)
nmax=k-1
allocate(iorder(nmax))
do i=1,nmax
iorder(i) = i
enddo
call isort(indices,iorder,nmax)
deallocate(iorder)
! sort indices by location in psi_det_sorted
! Start with 32 elements. Size will double along with the filtering.
allocate(preinteresting(0:32), prefullinteresting(0:32), &
interesting(0:32), fullinteresting(0:32))
preinteresting(:) = 0
prefullinteresting(:) = 0
do i=1,N_int
negMask(i,1) = not(psi_det_generators(i,1,i_generator))
negMask(i,2) = not(psi_det_generators(i,2,i_generator))
end do
do k=1,nmax
i = indices(k)
! mobMask in psi_det(i) but not in i_generator
! nt = popcnt(mobMask)
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
do j=2,N_int
mobMask(j,1) = iand(negMask(j,1), psi_det_sorted(j,1,i))
mobMask(j,2) = iand(negMask(j,2), psi_det_sorted(j,2,i))
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
end do
! preinteresting: within a 4-fold excitation from i_generator; in selectors
! prefullinteresting: within a double excitation from i_generator; not in selectors
if(nt <= 4) then
if(i <= N_det_selectors) then
sze = preinteresting(0)
if (sze+1 == size(preinteresting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = preinteresting(0:sze)
deallocate(preinteresting)
allocate(preinteresting(0:2*sze))
preinteresting(0:sze) = tmp_array(0:sze)
deallocate(tmp_array)
endif
preinteresting(0) = sze+1
preinteresting(sze+1) = i
else if(nt <= 2) then
sze = prefullinteresting(0)
if (sze+1 == size(prefullinteresting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = prefullinteresting(0:sze)
deallocate(prefullinteresting)
allocate(prefullinteresting(0:2*sze))
prefullinteresting(0:sze) = tmp_array(0:sze)
deallocate(tmp_array)
endif
prefullinteresting(0) = sze+1
prefullinteresting(sze+1) = i
end if
end if
end do
deallocate(indices)
! !$OMP CRITICAL
! print *, 'Step1: ', i_generator, preinteresting(0)
! !$OMP END CRITICAL
allocate(banned(mo_num, mo_num,2), bannedOrb(mo_num, 2))
if (is_complex) then
allocate (mat_complex(N_states, mo_num, mo_num))
else
allocate (mat(N_states, mo_num, mo_num))
endif
maskInd = -1
integer :: nb_count, maskInd_save
logical :: monoBdo_save
logical :: found
do s1=1,2
do i1=N_holes(s1),1,-1 ! Generate low excitations first
found = .False.
monoBdo_save = monoBdo
maskInd_save = maskInd
do s2=s1,2
ib = 1
if(s1 == s2) ib = i1+1
do i2=N_holes(s2),ib,-1
maskInd = maskInd + 1
if(mod(maskInd, csubset) == (subset-1)) then
found = .True.
end if
enddo
if(s1 /= s2) monoBdo = .false.
enddo
if (.not.found) cycle
monoBdo = monoBdo_save
maskInd = maskInd_save
h1 = hole_list(i1,s1)
!todo: kpts
if (is_complex) then
kh1 = (h1-1)/mo_num_per_kpt + 1
endif
! pmask is i_generator det with bit at h1 set to zero
call apply_hole(psi_det_generators(1,1,i_generator), s1,h1, pmask, ok, N_int)
negMask = not(pmask)
! see set definitions above
interesting(0) = 0
fullinteresting(0) = 0
do ii=1,preinteresting(0)
i = preinteresting(ii)
select case (N_int)
case (1)
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
case (2)
mobMask(1:2,1) = iand(negMask(1:2,1), psi_det_sorted(1:2,1,i))
mobMask(1:2,2) = iand(negMask(1:2,2), psi_det_sorted(1:2,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) + &
popcnt(mobMask(2, 1)) + popcnt(mobMask(2, 2))
case (3)
mobMask(1:3,1) = iand(negMask(1:3,1), psi_det_sorted(1:3,1,i))
mobMask(1:3,2) = iand(negMask(1:3,2), psi_det_sorted(1:3,2,i))
nt = 0
do j=3,1,-1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
endif
if (mobMask(j,2) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
end do
case (4)
mobMask(1:4,1) = iand(negMask(1:4,1), psi_det_sorted(1:4,1,i))
mobMask(1:4,2) = iand(negMask(1:4,2), psi_det_sorted(1:4,2,i))
nt = 0
do j=4,1,-1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
endif
if (mobMask(j,2) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
end do
case default
mobMask(1:N_int,1) = iand(negMask(1:N_int,1), psi_det_sorted(1:N_int,1,i))
mobMask(1:N_int,2) = iand(negMask(1:N_int,2), psi_det_sorted(1:N_int,2,i))
nt = 0
do j=N_int,1,-1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
endif
if (mobMask(j,2) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
end do
end select
! nt = ( orbs occupied in preinteresting(ii) and not occupied in i_gen(after removing elec from h1) )
if(nt <= 4) then
sze = interesting(0)
if (sze+1 == size(interesting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = interesting(0:sze)
deallocate(interesting)
allocate(interesting(0:2*sze))
interesting(0:sze) = tmp_array(0:sze)
deallocate(tmp_array)
endif
interesting(0) = sze+1
interesting(sze+1) = i
if(nt <= 2) then
sze = fullinteresting(0)
if (sze+1 == size(fullinteresting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = fullinteresting(0:sze)
deallocate(fullinteresting)
allocate(fullinteresting(0:2*sze))
fullinteresting(0:sze) = tmp_array(0:sze)
deallocate(tmp_array)
endif
fullinteresting(0) = sze+1
fullinteresting(sze+1) = i
end if
end if
end do
do ii=1,prefullinteresting(0)
i = prefullinteresting(ii)
nt = 0
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
if (nt > 2) cycle
do j=N_int,2,-1
mobMask(j,1) = iand(negMask(j,1), psi_det_sorted(j,1,i))
mobMask(j,2) = iand(negMask(j,2), psi_det_sorted(j,2,i))
nt = nt+ popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
if (nt > 2) exit
end do
if(nt <= 2) then
sze = fullinteresting(0)
if (sze+1 == size(fullinteresting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = fullinteresting(0:sze)
deallocate(fullinteresting)
allocate(fullinteresting(0:2*sze))
fullinteresting(0:sze) = tmp_array(0:sze)
deallocate(tmp_array)
endif
fullinteresting(0) = sze+1
fullinteresting(sze+1) = i
end if
end do
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
minilist (N_int, 2, interesting(0)) )
if(pert_2rdm)then
if (is_complex) then
print*,irp_here,' not implemented for complex: pert_2rdm'
stop -1
else
allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
do i=1,fullinteresting(0)
do j = 1, N_states
coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
enddo
enddo
endif
endif
do i=1,fullinteresting(0)
fullminilist(1:N_int,1:2,i) = psi_det_sorted(1:N_int,1:2,fullinteresting(i))
enddo
do i=1,interesting(0)
minilist(1:N_int,1:2,i) = psi_det_sorted(1:N_int,1:2,interesting(i))
enddo
do s2=s1,2
sp = s1
if(s1 /= s2) sp = 3
ib = 1
if(s1 == s2) ib = i1+1
monoAdo = .true.
do i2=N_holes(s2),ib,-1 ! Generate low excitations first
h2 = hole_list(i2,s2)
if (is_complex) then
!=============================================================
!!todo use this once kpts are implemented
kh2 = (h2-1)/mo_num_per_kpt + 1
kpt12 = kconserv(kh1,kh2,1)
! mask is gen_i with (h1,s1),(h2,s2) removed
call apply_hole(pmask, s2,h2, mask, ok, N_int)
banned = .true.
! only allow excitations that conserve momentum
do kk1=1,kpt_num
! equivalent to kk2 = kconserv(kh1,kh2,kk1)
kk2 = kconserv(kpt12,1,kk1)
ik01 = (kk1-1) * mo_num_per_kpt + 1 !first mo in kk1
ik02 = (kk2-1) * mo_num_per_kpt + 1 !first mo in kk2
do ik1 = ik01, ik01 + mo_num_per_kpt - 1 !loop over mos in kk1
do ik2 = ik02, ik02 + mo_num_per_kpt - 1 !loop over mos in kk2
! depending on sp, might not need both of these?
! sp=1 (a,a) or sp=2 (b,b): only use banned(:,:,1)
! sp=3 (a,b): banned(alpha,beta,1) is transpose of banned(beta,alpha,2)
banned(ik1,ik2,1) = .false.
banned(ik1,ik2,2) = .false.
enddo
enddo
enddo
!=============================================================
! ! mask is gen_i with (h1,s1),(h2,s2) removed
! call apply_hole(pmask, s2,h2, mask, ok, N_int)
! banned = .false.
!=============================================================
else
call apply_hole(pmask, s2,h2, mask, ok, N_int)
banned = .false.
endif
do j=1,mo_num
bannedOrb(j, 1) = .true.
bannedOrb(j, 2) = .true.
enddo
do s3=1,2
do i=1,N_particles(s3)
bannedOrb(particle_list(i,s3), s3) = .false. ! allow excitation into orbitals in particle_list
enddo
enddo
if(s1 /= s2) then
if(monoBdo) then
bannedOrb(h1,s1) = .false. ! allow alpha elec to go back into alpha hole
end if
if(monoAdo) then
bannedOrb(h2,s2) = .false. ! allow beta elec to go back into beta hole
monoAdo = .false.
end if
end if
maskInd = maskInd + 1
if(mod(maskInd, csubset) == (subset-1)) then
call spot_isinwf(mask, fullminilist, i_generator, fullinteresting(0), banned, fullMatch, fullinteresting)
if(fullMatch) cycle
! !$OMP CRITICAL
! print *, 'Step3: ', i_generator, h1, interesting(0)
! !$OMP END CRITICAL
if (is_complex) then
call splash_pq_complex(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat_complex, interesting)
if(.not.pert_2rdm)then
!call fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm2, mat_complex, buf)
call fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat_complex, buf)
else
print*,irp_here,' not implemented for complex (fill_buffer_double_rdm_complex)'
stop -1
!call fill_buffer_double_rdm_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm2, mat_complex, buf,fullminilist, coef_fullminilist_rev_complex, fullinteresting(0))
endif
else
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
if(.not.pert_2rdm)then
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
else
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
endif
endif!complex
end if
enddo !i2
if(s1 /= s2) monoBdo = .false.
enddo !s2
deallocate(fullminilist,minilist)
if(pert_2rdm)then
if (is_complex) then
print*,irp_here,' not implemented for complex: pert_2rdm'
stop -1
else
deallocate(coef_fullminilist_rev)
endif
endif
enddo ! i1
enddo ! s1
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
deallocate(banned, bannedOrb)
if (is_complex) then
deallocate(mat_complex)
else
deallocate(mat)
endif
end subroutine
subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: i_generator, sp, h1, h2
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate, jstate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert(N_states), coef(N_states), X(N_states)
double precision :: delta_E, val, Hii, w, tmp, alpha_h_psi
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
logical, external :: detEq
double precision, allocatable :: values(:)
integer, allocatable :: keys(:,:)
integer :: nkeys
double precision :: s_weight(N_states,N_states)
do jstate=1,N_states
do istate=1,N_states
s_weight(istate,jstate) = dsqrt(selection_weight(istate)*selection_weight(jstate))
enddo
enddo
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
E_shift = 0.d0
if (h0_type == 'SOP') then
j = det_to_occ_pattern(i_generator)
E_shift = psi_det_Hii(i_generator) - psi_occ_pattern_Hii(j)
endif
do p1=1,mo_num
if(bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2=ib,mo_num
! -----
! /!\ Generating only single excited determinants doesn't work because a
! determinant generated by a single excitation may be doubly excited wrt
! to a determinant of the future. In that case, the determinant will be
! detected as already generated when generating in the future with a
! double excitation.
!
! if (.not.do_singles) then
! if ((h1 == p1) .or. (h2 == p2)) then
! cycle
! endif
! endif
!
! if (.not.do_doubles) then
! if ((h1 /= p1).and.(h2 /= p2)) then
! cycle
! endif
! endif
! -----
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
val = maxval(abs(mat(1:N_states, p1, p2)))
if( val == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
if (number_of_particles(det)>0) then
cycle
endif
if (number_of_holes(det)>0) then
cycle
endif
endif
if (do_ddci) then
logical, external :: is_a_two_holes_two_particles
if (is_a_two_holes_two_particles(det)) then
cycle
endif
endif
if (do_only_1h1p) then
logical, external :: is_a_1h1p
if (.not.is_a_1h1p(det)) cycle
endif
Hii = diag_h_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
w = 0d0
! integer(bit_kind) :: occ(N_int,2), n
! call occ_pattern_of_det(det,occ,N_int)
! call occ_pattern_to_dets_size(occ,n,elec_alpha_num,N_int)
do istate=1,N_states
delta_E = E0(istate) - Hii + E_shift
alpha_h_psi = mat(istate, p1, p2)
val = alpha_h_psi + alpha_h_psi
tmp = dsqrt(delta_E * delta_E + val * val)
if (delta_E < 0.d0) then
tmp = -tmp
endif
e_pert(istate) = 0.5d0 * (tmp - delta_E)
if (dabs(alpha_h_psi) > 1.d-4) then
coef(istate) = e_pert(istate) / alpha_h_psi
else
coef(istate) = alpha_h_psi / delta_E
endif
if (e_pert(istate) < 0.d0) then
X(istate) = -dsqrt(-e_pert(istate))
else
X(istate) = dsqrt(e_pert(istate))
endif
enddo
! ! Gram-Schmidt using input overlap matrix
! do istate=1,N_states
! do jstate=1,istate-1
! if ( (pt2_overlap(jstate,istate) == 0.d0).or.(pt2_overlap(jstate,jstate) == 0.d0) ) cycle
! coef(istate) = coef(istate) - pt2_overlap(jstate,istate)/pt2_overlap(jstate,jstate) * coef(jstate)
! enddo
! enddo
do istate=1, N_states
do jstate=1,N_states
pt2_data % overlap(jstate,istate) += coef(jstate) * coef(istate)
enddo
enddo
do istate=1,N_states
alpha_h_psi = mat(istate, p1, p2)
pt2_data % variance(istate) += alpha_h_psi * alpha_h_psi
pt2_data % pt2(istate) += e_pert(istate)
!!!DEBUG
! delta_E = E0(istate) - Hii + E_shift
! pt2_data % pt2(istate) = pt2_data % pt2(istate) + alpha_h_psi**2/delta_E
!
! integer :: k
! double precision :: alpha_h_psi_2,hij
! alpha_h_psi_2 = 0.d0
! do k = 1,N_det_selectors
! call i_H_j(det,psi_selectors(1,1,k),N_int,hij)
! alpha_h_psi_2 = alpha_h_psi_2 + psi_selectors_coef(k,istate) * hij
! enddo
! if(dabs(alpha_h_psi_2 - alpha_h_psi).gt.1.d-12)then
! call debug_det(psi_det_generators(1,1,i_generator),N_int)
! call debug_det(det,N_int)
! print*,'alpha_h_psi,alpha_h_psi_2 = ',alpha_h_psi,alpha_h_psi_2
! stop
! endif
!!!DEBUG
select case (weight_selection)
case(5)
! Variance selection
w = w - alpha_h_psi * alpha_h_psi * s_weight(istate,istate)
do jstate=1,N_states
if (istate == jstate) cycle
w = w + alpha_h_psi*mat(jstate,p1,p2) * s_weight(istate,jstate)
enddo
case(6)
w = w - coef(istate) * coef(istate) * s_weight(istate,istate)
do jstate=1,N_states
if (istate == jstate) cycle
w = w + coef(istate)*coef(jstate) * s_weight(istate,jstate)
enddo
case default
! Energy selection
w = w + e_pert(istate) * s_weight(istate,istate)
do jstate=1,N_states
if (istate == jstate) cycle
w = w - dabs(X(istate))*X(jstate) * s_weight(istate,jstate)
enddo
end select
end do
if(pseudo_sym)then
if(dabs(mat(1, p1, p2)).lt.thresh_sym)then
w = 0.d0
endif
endif
! w = dble(n) * w
if(w <= buf%mini) then
call add_to_selection_buffer(buf, det, w)
end if
end do
end do
end
subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting)
use bitmasks
implicit none
BEGIN_DOC
! Computes the contributions A(r,s) by
! comparing the external determinant to all the internal determinants det(i).
! an applying two particles (r,s) to the mask.
END_DOC
integer, intent(in) :: sp, i_gen, N_sel
integer, intent(in) :: interesting(0:N_sel)
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N_sel)
logical, intent(inout) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num, 2)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer :: i, ii, j, k, l, h(0:2,2), p(0:4,2), nt
integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2)
integer(bit_kind) :: phasemask(N_int,2)
PROVIDE psi_selectors_coef_transp psi_det_sorted
mat = 0d0
do i=1,N_int
negMask(i,1) = not(mask(i,1))
negMask(i,2) = not(mask(i,2))
end do
do i=1, N_sel
if (interesting(i) < 0) then
stop 'prefetch interesting(i) and det(i)'
endif
mobMask(1,1) = iand(negMask(1,1), det(1,1,i))
mobMask(1,2) = iand(negMask(1,2), det(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
if(nt > 4) cycle
do j=2,N_int
mobMask(j,1) = iand(negMask(j,1), det(j,1,i))
mobMask(j,2) = iand(negMask(j,2), det(j,2,i))
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
end do
if(nt > 4) cycle
if (interesting(i) == i_gen) then
if(sp == 3) then
do k=1,mo_num
do j=1,mo_num
banned(j,k,2) = banned(k,j,1)
enddo
enddo
else
do k=1,mo_num
do l=k+1,mo_num
banned(l,k,1) = banned(k,l,1)
end do
end do
end if
end if
if (interesting(i) >= i_gen) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
perMask(1,1) = iand(mask(1,1), not(det(1,1,i)))
perMask(1,2) = iand(mask(1,2), not(det(1,2,i)))
do j=2,N_int
perMask(j,1) = iand(mask(j,1), not(det(j,1,i)))
perMask(j,2) = iand(mask(j,2), not(det(j,2,i)))
end do
call bitstring_to_list_in_selection(perMask(1,1), h(1,1), h(0,1), N_int)
call bitstring_to_list_in_selection(perMask(1,2), h(1,2), h(0,2), N_int)
call get_mask_phase(psi_det_sorted(1,1,interesting(i)), phasemask,N_int)
if(nt == 4) then
! call get_d2_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
call get_d2(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
else if(nt == 3) then
! call get_d1_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
call get_d1(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
else
! call get_d0_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
call get_d0(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
end if
else if(nt == 4) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
call past_d2(banned, p, sp)
else if(nt == 3) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
call past_d1(bannedOrb, p)
end if
end do
end
subroutine get_d2(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi, mo_two_e_integral
integer :: i, j, k, tip, ma, mi, puti, putj
integer :: h1, h2, p1, p2, i1, i2
double precision :: hij, phase
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
integer, parameter :: turn2(2) = (/2, 1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
bant = 1
tip = p(0,1) * p(0,2)
ma = sp
if(p(0,1) > p(0,2)) ma = 1
if(p(0,1) < p(0,2)) ma = 2
mi = mod(ma, 2) + 1
if(sp == 3) then
if(ma == 2) bant = 2
if(tip == 3) then
puti = p(1, mi)
if(bannedOrb(puti, mi)) return
h1 = h(1, ma)
h2 = h(2, ma)
do i = 1, 3
putj = p(i, ma)
if(banned(putj,puti,bant)) cycle
i1 = turn3(1,i)
i2 = turn3(2,i)
p1 = p(i1, ma)
p2 = p(i2, ma)
hij = mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2, p1, h1, h2)
if (hij == 0.d0) cycle
hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
if(ma == 1) then
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, putj, puti) = mat(k, putj, puti) + coefs(k) * hij
enddo
else
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
end if
end do
else
h1 = h(1,1)
h2 = h(1,2)
do j = 1,2
putj = p(j, 2)
if(bannedOrb(putj, 2)) cycle
p2 = p(turn2(j), 2)
do i = 1,2
puti = p(i, 1)
if(banned(puti,putj,bant) .or. bannedOrb(puti,1)) cycle
p1 = p(turn2(i), 1)
hij = mo_two_e_integral(p1, p2, h1, h2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
endif
end do
end do
end if
else
if(tip == 0) then
h1 = h(1, ma)
h2 = h(2, ma)
do i=1,3
puti = p(i, ma)
if(bannedOrb(puti,ma)) cycle
do j=i+1,4
putj = p(j, ma)
if(bannedOrb(putj,ma)) cycle
if(banned(puti,putj,1)) cycle
i1 = turn2d(1, i, j)
i2 = turn2d(2, i, j)
p1 = p(i1, ma)
p2 = p(i2, ma)
hij = mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)
if (hij == 0.d0) cycle
hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) +coefs(k) * hij
enddo
end do
end do
else if(tip == 3) then
h1 = h(1, mi)
h2 = h(1, ma)
p1 = p(1, mi)
do i=1,3
puti = p(turn3(1,i), ma)
if(bannedOrb(puti,ma)) cycle
putj = p(turn3(2,i), ma)
if(bannedOrb(putj,ma)) cycle
if(banned(puti,putj,1)) cycle
p2 = p(i, ma)
hij = mo_two_e_integral(p1, p2, h1, h2)
if (hij == 0.d0) cycle
hij = hij * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int)
if (puti < putj) then
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
else
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, putj, puti) = mat(k, putj, puti) + coefs(k) * hij
enddo
endif
end do
else ! tip == 4
puti = p(1, sp)
putj = p(2, sp)
if(.not. banned(puti,putj,1)) then
p1 = p(1, mi)
p2 = p(2, mi)
h1 = h(1, mi)
h2 = h(2, mi)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2))
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
end if
end if
end if
end if
end
subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi, mo_two_e_integral
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib, k, l
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
double precision, allocatable :: hij_cache(:,:)
double precision :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
PROVIDE mo_integrals_map N_int
allocate (lbanned(mo_num, 2))
allocate (hij_cache(mo_num,2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
if(.not. bannedOrb(puti, mi)) then
call get_mo_two_e_integrals(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map)
call get_mo_two_e_integrals(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map)
tmp_row = 0d0
do putj=1, hfix-1
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k)
enddo
endif
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k)
enddo
endif
end do
if(ma == 1) then
mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,puti,l) = mat(k,puti,l) + tmp_row(k,l)
enddo
enddo
end if
end if
!MOVE MI
pfix = p(1,mi)
tmp_row = 0d0
tmp_row2 = 0d0
call get_mo_two_e_integrals(hfix,pfix,p1,mo_num,hij_cache(1,1),mo_integrals_map)
call get_mo_two_e_integrals(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map)
putj = p1
do puti=1,mo_num !HOT
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k)
enddo
endif
end if
! enddo
!
putj = p2
! do puti=1,mo_num !HOT
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,1)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
do k=1,N_states
tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k)
enddo
endif
end if
end do
if(mi == 1) then
mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:)
mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p1,l) = mat(k,p1,l) + tmp_row(k,l)
mat(k,p2,l) = mat(k,p2,l) + tmp_row2(k,l)
enddo
enddo
end if
else ! sp /= 3
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
call get_mo_two_e_integrals(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map)
call get_mo_two_e_integrals(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map)
tmp_row = 0d0
do putj=1,hfix-1
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
endif
end do
do putj=hfix+1,mo_num
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
endif
end do
mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1)
do l=puti,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, l) = mat(k, puti,l) + tmp_row(k,l)
enddo
enddo
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
tmp_row = 0d0
tmp_row2 = 0d0
call get_mo_two_e_integrals(hfix,p1,pfix,mo_num,hij_cache(1,1),mo_integrals_map)
call get_mo_two_e_integrals(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map)
putj = p2
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,1)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k)
enddo
endif
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
do k=1,N_states
tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k)
enddo
endif
end if
end do
mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1)
do l=p2,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p2,l) = mat(k,p2,l) + tmp_row(k,l)
enddo
enddo
mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1)
do l=p1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p1,l) = mat(k,p1,l) + tmp_row2(k,l)
enddo
enddo
end if
end if
deallocate(lbanned,hij_cache)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij
enddo
end do
end do
end
subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
integer :: i, j, k, s, h1, h2, p1, p2, puti, putj
double precision :: hij, phase
double precision, external :: get_phase_bi, mo_two_e_integral
logical :: ok
integer, parameter :: bant=1
double precision, allocatable :: hij_cache1(:), hij_cache2(:)
allocate (hij_cache1(mo_num),hij_cache2(mo_num))
if(sp == 3) then ! AB
h1 = p(1,1)
h2 = p(1,2)
do p1=1, mo_num
if(bannedOrb(p1, 1)) cycle
call get_mo_two_e_integrals(p1,h2,h1,mo_num,hij_cache1,mo_integrals_map)
do p2=1, mo_num
if(bannedOrb(p2,2)) cycle
if(banned(p1, p2, bant)) cycle ! rentable?
if(p1 == h1 .or. p2 == h2) then
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
hij = hij_cache1(p2) * phase
end if
if (hij == 0.d0) cycle
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij ! HOTSPOT
enddo
end do
end do
else ! AA BB
p1 = p(1,sp)
p2 = p(2,sp)
do puti=1, mo_num
if(bannedOrb(puti, sp)) cycle
call get_mo_two_e_integrals(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map)
call get_mo_two_e_integrals(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map)
do putj=puti+1, mo_num
if(bannedOrb(putj, sp)) cycle
if(banned(puti, putj, bant)) cycle ! rentable?
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
if (hij == 0.d0) cycle
else
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))
if (hij == 0.d0) cycle
hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
end if
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
end do
end do
end if
deallocate(hij_cache1,hij_cache2)
end
subroutine past_d1(bannedOrb, p)
use bitmasks
implicit none
logical, intent(inout) :: bannedOrb(mo_num, 2)
integer, intent(in) :: p(0:4, 2)
integer :: i,s
do s = 1, 2
do i = 1, p(0, s)
bannedOrb(p(i, s), s) = .true.
end do
end do
end
subroutine past_d2(banned, p, sp)
use bitmasks
implicit none
logical, intent(inout) :: banned(mo_num, mo_num)
integer, intent(in) :: p(0:4, 2), sp
integer :: i,j
if(sp == 3) then
do j=1,p(0,2)
do i=1,p(0,1)
banned(p(i,1), p(j,2)) = .true.
end do
end do
else
do i=1,p(0, sp)
do j=1,i-1
banned(p(j,sp), p(i,sp)) = .true.
banned(p(i,sp), p(j,sp)) = .true.
end do
end do
end if
end
subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting)
use bitmasks
implicit none
BEGIN_DOC
! Identify the determinants in det which are in the internal space. These are
! the determinants that can be produced by creating two particles on the mask.
END_DOC
integer, intent(in) :: i_gen, N
integer, intent(in) :: interesting(0:N)
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N)
logical, intent(inout) :: banned(mo_num, mo_num)
logical, intent(out) :: fullMatch
integer :: i, j, na, nb, list(3)
integer(bit_kind) :: myMask(N_int, 2), negMask(N_int, 2)
fullMatch = .false.
do i=1,N_int
negMask(i,1) = not(mask(i,1))
negMask(i,2) = not(mask(i,2))
end do
genl : do i=1, N
! If det(i) can't be generated by the mask, cycle
do j=1, N_int ! if all occupied orbs in mask are not also occupied in det(i), go to next det
if(iand(det(j,1,i), mask(j,1)) /= mask(j, 1)) cycle genl
if(iand(det(j,2,i), mask(j,2)) /= mask(j, 2)) cycle genl
end do
! If det(i) < det(i_gen), it hs already been considered
if(interesting(i) < i_gen) then
fullMatch = .true.
return
end if
! Identify the particles
do j=1, N_int ! if electrons are excited into the orbs given by myMask, resulting determinant will be det(i)
myMask(j, 1) = iand(det(j, 1, i), negMask(j, 1))
myMask(j, 2) = iand(det(j, 2, i), negMask(j, 2))
end do
! don't allow excitations into this pair of orbitals?
! should 'banned' have dimensions (mo_num,mo_num,2)?
! is it always true that popcnt(myMask) = 2 ? (sum over N_int and alpha/beta spins)
call bitstring_to_list_in_selection(myMask(1,1), list(1), na, N_int)
call bitstring_to_list_in_selection(myMask(1,2), list(na+1), nb, N_int)
banned(list(1), list(2)) = .true.
end do genl
end
subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint)
use bitmasks
implicit none
BEGIN_DOC
! Gives the inidices(+1) of the bits set to 1 in the bit string
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: string(Nint)
integer, intent(out) :: list(Nint*bit_kind_size)
integer, intent(out) :: n_elements
integer :: i, ishift
integer(bit_kind) :: l
n_elements = 0
ishift = 2
do i=1,Nint
l = string(i)
do while (l /= 0_bit_kind)
n_elements = n_elements+1
list(n_elements) = ishift+popcnt(l-1_bit_kind) - popcnt(l)
l = iand(l,l-1_bit_kind)
enddo
ishift = ishift + bit_kind_size
enddo
end
!
! OLD unoptimized routines for debugging
! ======================================
subroutine get_d0_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
integer :: i, j, s, h1, h2, p1, p2, puti, putj
double precision :: hij, phase
double precision, external :: get_phase_bi, mo_two_e_integral
logical :: ok
integer :: bant
bant = 1
if(sp == 3) then ! AB
h1 = p(1,1)
h2 = p(1,2)
do p1=1, mo_num
if(bannedOrb(p1, 1)) cycle
do p2=1, mo_num
if(bannedOrb(p2,2)) cycle
if(banned(p1, p2, bant)) cycle ! rentable?
if(p1 == h1 .or. p2 == h2) then
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
hij = mo_two_e_integral(p1, p2, h1, h2) * phase
end if
mat(:, p1, p2) += coefs(:) * hij
end do
end do
else ! AA BB
p1 = p(1,sp)
p2 = p(2,sp)
do puti=1, mo_num
if(bannedOrb(puti, sp)) cycle
do putj=puti+1, mo_num
if(bannedOrb(putj, sp)) cycle
if(banned(puti, putj, bant)) cycle ! rentable?
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
end if
mat(:, puti, putj) += coefs(:) * hij
end do
end do
end if
end
subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
double precision, external :: get_phase_bi, mo_two_e_integral
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
allocate (lbanned(mo_num, 2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
if(.not. bannedOrb(puti, mi)) then
tmp_row = 0d0
do putj=1, hfix-1
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(1:N_states,putj) += hij * coefs(1:N_states)
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(1:N_states,putj) += hij * coefs(1:N_states)
end do
if(ma == 1) then
mat(1:N_states,1:mo_num,puti) += tmp_row(1:N_states,1:mo_num)
else
mat(1:N_states,puti,1:mo_num) += tmp_row(1:N_states,1:mo_num)
end if
end if
!MOVE MI
pfix = p(1,mi)
tmp_row = 0d0
tmp_row2 = 0d0
do puti=1,mo_num
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = mo_two_e_integral(p2,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
tmp_row(:,puti) += hij * coefs(:)
end if
putj = p2
if(.not. banned(putj,puti,bant)) then
hij = mo_two_e_integral(p1,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
tmp_row2(:,puti) += hij * coefs(:)
end if
end do
if(mi == 1) then
mat(:,:,p1) += tmp_row(:,:)
mat(:,:,p2) += tmp_row2(:,:)
else
mat(:,p1,:) += tmp_row(:,:)
mat(:,p2,:) += tmp_row2(:,:)
end if
else
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
tmp_row = 0d0
do putj=1,hfix-1
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(:,putj) += hij * coefs(:)
end do
do putj=hfix+1,mo_num
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(:,putj) += hij * coefs(:)
end do
mat(:, :puti-1, puti) += tmp_row(:,:puti-1)
mat(:, puti, puti:) += tmp_row(:,puti:)
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
tmp_row = 0d0
tmp_row2 = 0d0
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = mo_two_e_integral(pfix, p1, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
tmp_row(:,puti) += hij * coefs(:)
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = mo_two_e_integral(pfix, p2, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
tmp_row2(:,puti) += hij * coefs(:)
end if
end do
mat(:,:p2-1,p2) += tmp_row(:,:p2-1)
mat(:,p2,p2:) += tmp_row(:,p2:)
mat(:,:p1-1,p1) += tmp_row2(:,:p1-1)
mat(:,p1,p1:) += tmp_row2(:,p1:)
end if
end if
deallocate(lbanned)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
mat(:, p1, p2) += coefs(:) * hij
end do
end do
end
subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(2,N_int)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi, mo_two_e_integral
integer :: i, j, tip, ma, mi, puti, putj
integer :: h1, h2, p1, p2, i1, i2
double precision :: hij, phase
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
integer, parameter :: turn2(2) = (/2, 1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
bant = 1
tip = p(0,1) * p(0,2)
ma = sp
if(p(0,1) > p(0,2)) ma = 1
if(p(0,1) < p(0,2)) ma = 2
mi = mod(ma, 2) + 1
if(sp == 3) then
if(ma == 2) bant = 2
if(tip == 3) then
puti = p(1, mi)
do i = 1, 3
putj = p(i, ma)
if(banned(putj,puti,bant)) cycle
i1 = turn3(1,i)
i2 = turn3(2,i)
p1 = p(i1, ma)
p2 = p(i2, ma)
h1 = h(1, ma)
h2 = h(2, ma)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
if(ma == 1) then
mat(:, putj, puti) += coefs(:) * hij
else
mat(:, puti, putj) += coefs(:) * hij
end if
end do
else
h1 = h(1,1)
h2 = h(1,2)
do j = 1,2
putj = p(j, 2)
p2 = p(turn2(j), 2)
do i = 1,2
puti = p(i, 1)
if(banned(puti,putj,bant)) cycle
p1 = p(turn2(i), 1)
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2,N_int)
mat(:, puti, putj) += coefs(:) * hij
end do
end do
end if
else
if(tip == 0) then
h1 = h(1, ma)
h2 = h(2, ma)
do i=1,3
puti = p(i, ma)
do j=i+1,4
putj = p(j, ma)
if(banned(puti,putj,1)) cycle
i1 = turn2d(1, i, j)
i2 = turn2d(2, i, j)
p1 = p(i1, ma)
p2 = p(i2, ma)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2,N_int)
mat(:, puti, putj) += coefs(:) * hij
end do
end do
else if(tip == 3) then
h1 = h(1, mi)
h2 = h(1, ma)
p1 = p(1, mi)
do i=1,3
puti = p(turn3(1,i), ma)
putj = p(turn3(2,i), ma)
if(banned(puti,putj,1)) cycle
p2 = p(i, ma)
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2,N_int)
mat(:, min(puti, putj), max(puti, putj)) += coefs(:) * hij
end do
else ! tip == 4
puti = p(1, sp)
putj = p(2, sp)
if(.not. banned(puti,putj,1)) then
p1 = p(1, mi)
p2 = p(2, mi)
h1 = h(1, mi)
h2 = h(2, mi)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2,N_int)
mat(:, puti, putj) += coefs(:) * hij
end if
end if
end if
end
!==============================================================================!
! !
! Complex !
! !
!==============================================================================!
subroutine fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
!todo: should be okay for complex
use bitmasks
use selection_types
implicit none
integer, intent(in) :: i_generator, sp, h1, h2
complex*16, intent(in) :: mat(N_states, mo_num, mo_num)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate, jstate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert(n_states), x(n_states)
double precision :: delta_E, val, Hii, w, tmp
complex*16 :: alpha_h_psi, coef(n_states), val_c
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
! logical, external :: detEq
! double precision, allocatable :: values(:)
! integer, allocatable :: keys(:,:)
! integer :: nkeys
!double precision :: s_weight(n_states,n_states)
!do jstate=1,n_states
! do istate=1,n_states
! s_weight(istate,jstate) = dsqrt(selection_weight(istate)*selection_weight(jstate))
! enddo
!enddo
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
E_shift = 0.d0
if (h0_type == 'SOP') then
j = det_to_occ_pattern(i_generator)
E_shift = psi_det_Hii(i_generator) - psi_occ_pattern_Hii(j)
endif
do p1=1,mo_num
if(bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2=ib,mo_num
! -----
! /!\ Generating only single excited determinants doesn't work because a
! determinant generated by a single excitation may be doubly excited wrt
! to a determinant of the future. In that case, the determinant will be
! detected as already generated when generating in the future with a
! double excitation.
!
! if (.not.do_singles) then
! if ((h1 == p1) .or. (h2 == p2)) then
! cycle
! endif
! endif
!
! if (.not.do_doubles) then
! if ((h1 /= p1).and.(h2 /= p2)) then
! cycle
! endif
! endif
! -----
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
val = maxval(cdabs(mat(1:N_states, p1, p2)))
if( val == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
if (number_of_particles(det)>0) then
cycle
endif
if (number_of_holes(det)>0) then
cycle
endif
endif
if (do_ddci) then
logical, external :: is_a_two_holes_two_particles
if (is_a_two_holes_two_particles(det)) then
cycle
endif
endif
if (do_only_1h1p) then
logical, external :: is_a_1h1p
if (.not.is_a_1h1p(det)) cycle
endif
Hii = diag_h_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
w = 0d0
! integer(bit_kind) :: occ(N_int,2), n
! call occ_pattern_of_det(det,occ,N_int)
! call occ_pattern_to_dets_size(occ,n,elec_alpha_num,N_int)
do istate=1,N_states
delta_E = E0(istate) - Hii + E_shift
alpha_h_psi = mat(istate, p1, p2)
val_c = alpha_h_psi + alpha_h_psi
tmp = dsqrt(delta_E * delta_E + cdabs(val_c * val_c))
if (delta_E < 0.d0) then
tmp = -tmp
endif
e_pert(istate) = 0.5d0 * (tmp - delta_E)
!TODO: check conjugate for coef
if (cdabs(alpha_h_psi) > 1.d-4) then
coef(istate) = e_pert(istate) / alpha_h_psi
else
coef(istate) = alpha_h_psi / delta_E
endif
if (e_pert(istate) < 0.d0) then
x(istate) = -dsqrt(-e_pert(istate))
else
x(istate) = dsqrt(e_pert(istate))
endif
enddo
do istate=1,n_states
do jstate=1,n_states
val_c = coef(jstate) * dconjg(coef(istate))
pt2_data % overlap(jstate,istate) += dble(val_c)
pt2_data % overlap_imag(jstate,istate) += dimag(val_c)
enddo
enddo
do istate=1,n_states
alpha_h_psi = mat(istate, p1, p2)
pt2_data % variance(istate) += cdabs(alpha_h_psi * alpha_h_psi)
pt2_data % pt2(istate) += e_pert(istate)
!!!DEBUG
! integer :: k
! double precision :: alpha_h_psi_2,hij
! alpha_h_psi_2 = 0.d0
! do k = 1,N_det_selectors
! call i_H_j(det,psi_selectors(1,1,k),N_int,hij)
! alpha_h_psi_2 = alpha_h_psi_2 + psi_selectors_coef(k,istate) * hij
! enddo
! if(dabs(alpha_h_psi_2 - alpha_h_psi).gt.1.d-12)then
! call debug_det(psi_det_generators(1,1,i_generator),N_int)
! call debug_det(det,N_int)
! print*,'alpha_h_psi,alpha_h_psi_2 = ',alpha_h_psi,alpha_h_psi_2
! stop
! endif
!!!DEBUG
select case (weight_selection)
!TODO: check off-diagonals
case(5)
! Variance selection
w = w - cdabs(alpha_h_psi * alpha_h_psi) * selection_weight_mat(istate,istate)
do jstate=1,n_states
if (istate == jstate) cycle
w = w + cdabs(alpha_h_psi * mat(jstate,p1,p2)) * selection_weight_mat(istate,jstate)
enddo
case(6)
w = w - cdabs(coef(istate) * coef(istate)) * selection_weight_mat(istate,istate)
do jstate=1,n_states
if (istate == jstate) cycle
w = w + cdabs(coef(istate)*coef(jstate)) * selection_weight_mat(istate,jstate)
enddo
case default
! Energy selection
w = w + e_pert(istate) * selection_weight_mat(istate,istate)
do jstate=1,n_states
if (istate == jstate) cycle
!TODO: why dabs?
w = w - dabs(x(istate))*x(jstate) * selection_weight_mat(istate,jstate)
enddo
end select
end do
if(pseudo_sym)then
if(cdabs(mat(1, p1, p2)).lt.thresh_sym)then
w = 0.d0
endif
endif
! w = dble(n) * w
if(w <= buf%mini) then
call add_to_selection_buffer(buf, det, w)
end if
end do
end do
end
subroutine splash_pq_complex(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting)
use bitmasks
implicit none
BEGIN_DOC
! Computes the contributions A(r,s) by
! comparing the external determinant to all the internal determinants det(i).
! an applying two particles (r,s) to the mask.
END_DOC
integer, intent(in) :: sp, i_gen, N_sel
integer, intent(in) :: interesting(0:N_sel)
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N_sel)
logical, intent(inout) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num, 2)
! mat should be out, not inout? (if only called from select_singles_and_doubles)
complex*16, intent(inout) :: mat(N_states, mo_num, mo_num)
integer :: i, ii, j, k, l, h(0:2,2), p(0:4,2), nt
integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2)
integer(bit_kind) :: phasemask(N_int,2)
PROVIDE psi_selectors_coef_transp_complex psi_det_sorted
mat = 0d0
do i=1,N_int
negMask(i,1) = not(mask(i,1))
negMask(i,2) = not(mask(i,2))
end do
do i=1, N_sel
if (interesting(i) < 0) then
stop 'prefetch interesting(i) and det(i)'
endif
mobMask(1,1) = iand(negMask(1,1), det(1,1,i))
mobMask(1,2) = iand(negMask(1,2), det(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
if(nt > 4) cycle
do j=2,N_int
mobMask(j,1) = iand(negMask(j,1), det(j,1,i))
mobMask(j,2) = iand(negMask(j,2), det(j,2,i))
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
end do
if(nt > 4) cycle
if (interesting(i) == i_gen) then
if(sp == 3) then
do k=1,mo_num
do j=1,mo_num
banned(j,k,2) = banned(k,j,1)
enddo
enddo
else
do k=1,mo_num
do l=k+1,mo_num
banned(l,k,1) = banned(k,l,1)
end do
end do
end if
end if
! p contains orbs in det that are not in the doubly ionized generator
if (interesting(i) >= i_gen) then ! det past i_gen
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
perMask(1,1) = iand(mask(1,1), not(det(1,1,i)))
perMask(1,2) = iand(mask(1,2), not(det(1,2,i)))
do j=2,N_int
perMask(j,1) = iand(mask(j,1), not(det(j,1,i)))
perMask(j,2) = iand(mask(j,2), not(det(j,2,i)))
end do
! h contains orbs in the doubly ionized generator that are not in det
call bitstring_to_list_in_selection(perMask(1,1), h(1,1), h(0,1), N_int)
call bitstring_to_list_in_selection(perMask(1,2), h(1,2), h(0,2), N_int)
call get_mask_phase(psi_det_sorted(1,1,interesting(i)), phasemask,N_int)
if(nt == 4) then ! differ by 6 (2,4)
call get_d2_complex(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp_complex(1, interesting(i)))
else if(nt == 3) then ! differ by 4 (1,3)
!call get_d1_complex(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp_complex(1, interesting(i)))
!call get_d1_kpts(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp_complex(1, interesting(i)))
call get_d1_kpts_new(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp_complex(1, interesting(i)))
else ! differ by 2 (0,2)
call get_d0_complex(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp_complex(1, interesting(i)))
end if
else if(nt == 4) then ! differ by 6 (2,4); i_gen past det
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
call past_d2(banned, p, sp)
else if(nt == 3) then ! differ by 4 (1,3); i_gen past det
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
call past_d1(bannedOrb, p)
end if
end do
end
subroutine get_d2_complex(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
!todo: indices/conjg should be correct for complex
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
complex*16, intent(in) :: coefs(N_states)
complex*16, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi
complex*16, external :: mo_two_e_integral_complex
integer :: i, j, k, tip, ma, mi, puti, putj
integer :: h1, h2, p1, p2, i1, i2
double precision :: phase
complex*16 :: hij
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
integer, parameter :: turn2(2) = (/2, 1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
bant = 1
tip = p(0,1) * p(0,2) ! number of alpha particles times number of beta particles
ma = sp !1:(alpha,alpha); 2:(b,b); 3:(a,b)
if(p(0,1) > p(0,2)) ma = 1 ! more alpha particles than beta particles
if(p(0,1) < p(0,2)) ma = 2 ! fewer alpha particles than beta particles
mi = mod(ma, 2) + 1
if(sp == 3) then ! if one alpha and one beta xhole
!(where xholes refer to the ionizations from the generator, not the holes occupied in the ionized generator)
if(ma == 2) bant = 2 ! if more beta particles than alpha particles
if(tip == 3) then ! if 3 of one particle spin and 1 of the other particle spin
puti = p(1, mi)
if(bannedOrb(puti, mi)) return
h1 = h(1, ma)
h2 = h(2, ma)
do i = 1, 3 ! loop over all 3 combinations of 2 particles with spin ma
putj = p(i, ma)
if(banned(putj,puti,bant)) cycle
i1 = turn3(1,i)
i2 = turn3(2,i)
p1 = p(i1, ma)
p2 = p(i2, ma)
! |G> = |psi_{gen,i}>
! |G'> = a_{x1} a_{x2} |G>
! |alpha> = a_{puti}^{\dagger} a_{putj}^{\dagger} |G'>
! |alpha> = t_{x1,x2}^{puti,putj} |G>
! hij = <psi_{selectors,i}|H|alpha>
! |alpha> = t_{p1,p2}^{h1,h2}|psi_{selectors,i}>
!todo: <i|H|j> = (<h1,h2|p1,p2> - <h1,h2|p2,p1>) * phase
! <psi|H|j> += dconjg(c_i) * <i|H|j>
! <j|H|i> = (<p1,p2|h1,h2> - <p2,p1|h1,h2>) * phase
! <j|H|psi> += <j|H|i> * c_i
hij = mo_two_e_integral_complex(p1, p2, h1, h2) - mo_two_e_integral_complex(p2, p1, h1, h2)
if (hij == (0.d0,0.d0)) cycle
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
hij = dconjg(hij) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
if(ma == 1) then ! if particle spins are (alpha,alpha,alpha,beta), then puti is beta and putj is alpha
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, putj, puti) = mat(k, putj, puti) + coefs(k) * hij
enddo
else ! if particle spins are (beta,beta,beta,alpha), then puti is alpha and putj is beta
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
end if
end do
else ! if 2 alpha and 2 beta particles
h1 = h(1,1)
h2 = h(1,2)
do j = 1,2 ! loop over all 4 combinations of one alpha and one beta particle
putj = p(j, 2)
if(bannedOrb(putj, 2)) cycle
p2 = p(turn2(j), 2)
do i = 1,2
puti = p(i, 1)
if(banned(puti,putj,bant) .or. bannedOrb(puti,1)) cycle
p1 = p(turn2(i), 1)
! hij = <psi_{selectors,i}|H|alpha>
hij = mo_two_e_integral_complex(p1, p2, h1, h2)
if (hij /= (0.d0,0.d0)) then
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
hij = dconjg(hij) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
endif
end do
end do
end if
else ! if holes are (a,a) or (b,b)
if(tip == 0) then ! if particles are (a,a,a,a) or (b,b,b,b)
h1 = h(1, ma)
h2 = h(2, ma)
do i=1,3
puti = p(i, ma)
if(bannedOrb(puti,ma)) cycle
do j=i+1,4
putj = p(j, ma)
if(bannedOrb(putj,ma)) cycle
if(banned(puti,putj,1)) cycle
i1 = turn2d(1, i, j)
i2 = turn2d(2, i, j)
p1 = p(i1, ma)
p2 = p(i2, ma)
hij = mo_two_e_integral_complex(p1, p2, h1, h2) - mo_two_e_integral_complex(p2,p1, h1, h2)
if (hij == (0.d0,0.d0)) cycle
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
hij = dconjg(hij) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) +coefs(k) * hij
enddo
end do
end do
else if(tip == 3) then ! if particles are (a,a,a,b) (ma=1,mi=2) or (a,b,b,b) (ma=2,mi=1)
h1 = h(1, mi)
h2 = h(1, ma)
p1 = p(1, mi)
do i=1,3
puti = p(turn3(1,i), ma)
if(bannedOrb(puti,ma)) cycle
putj = p(turn3(2,i), ma)
if(bannedOrb(putj,ma)) cycle
if(banned(puti,putj,1)) cycle
p2 = p(i, ma)
hij = mo_two_e_integral_complex(p1, p2, h1, h2)
if (hij == (0.d0,0.d0)) cycle
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
hij = dconjg(hij) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int)
if (puti < putj) then
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
else
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, putj, puti) = mat(k, putj, puti) + coefs(k) * hij
enddo
endif
end do
else ! tip == 4 (a,a,b,b)
puti = p(1, sp)
putj = p(2, sp)
if(.not. banned(puti,putj,1)) then
p1 = p(1, mi)
p2 = p(2, mi)
h1 = h(1, mi)
h2 = h(2, mi)
hij = (mo_two_e_integral_complex(p1, p2, h1, h2) - mo_two_e_integral_complex(p2,p1, h1, h2))
if (hij /= (0.d0,0.d0)) then
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
hij = dconjg(hij) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
end if
end if
end if
end if
end
subroutine get_d1_complex(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
!todo: indices should be okay for complex?
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
complex*16, intent(in) :: coefs(N_states)
complex*16, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi
complex*16, external :: mo_two_e_integral_complex
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib, k, l
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
complex*16, allocatable :: hij_cache(:,:)
complex*16 :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
PROVIDE mo_integrals_map N_int
allocate (lbanned(mo_num, 2))
allocate (hij_cache(mo_num,2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
if(.not. bannedOrb(puti, mi)) then
call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
tmp_row = (0.d0,0.d0)
do putj=1, hfix-1
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k)
enddo
endif
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k)
enddo
endif
end do
if(ma == 1) then
mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,puti,l) = mat(k,puti,l) + tmp_row(k,l)
enddo
enddo
end if
end if
!MOVE MI
pfix = p(1,mi)
tmp_row = (0.d0,0.d0)
tmp_row2 = (0.d0,0.d0)
call get_mo_two_e_integrals_complex(hfix,pfix,p1,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_complex(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
putj = p1
do puti=1,mo_num !HOT
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k)
enddo
endif
end if
! enddo
!
putj = p2
! do puti=1,mo_num !HOT
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
do k=1,N_states
tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k)
enddo
endif
end if
end do
if(mi == 1) then
mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:)
mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p1,l) = mat(k,p1,l) + tmp_row(k,l)
mat(k,p2,l) = mat(k,p2,l) + tmp_row2(k,l)
enddo
enddo
end if
else ! sp /= 3
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
tmp_row = (0.d0,0.d0)
do putj=1,hfix-1
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
endif
end do
do putj=hfix+1,mo_num
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
endif
end do
mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1)
do l=puti,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, l) = mat(k, puti,l) + tmp_row(k,l)
enddo
enddo
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
tmp_row = (0.d0,0.d0)
tmp_row2 = (0.d0,0.d0)
call get_mo_two_e_integrals_complex(hfix,p1,pfix,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_complex(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
putj = p2
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k)
enddo
endif
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
do k=1,N_states
tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k)
enddo
endif
end if
end do
mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1)
do l=p2,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p2,l) = mat(k,p2,l) + tmp_row(k,l)
enddo
enddo
mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1)
do l=p1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p1,l) = mat(k,p1,l) + tmp_row2(k,l)
enddo
enddo
end if
end if
deallocate(lbanned,hij_cache)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
! gen is a selector; mask is ionized generator; det is alpha
! hij is contribution to <psi|H|alpha>
call i_h_j_complex(gen, det, N_int, hij)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * dconjg(hij)
enddo
end do
end do
end
subroutine get_d0_complex(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
!todo: indices/conjg should be okay for complex
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
complex*16, intent(in) :: coefs(N_states)
complex*16, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
integer :: i, j, k, s, h1, h2, p1, p2, puti, putj
double precision :: phase
complex*16 :: hij
double precision, external :: get_phase_bi
complex*16, external :: mo_two_e_integral_complex
logical :: ok
integer, parameter :: bant=1
complex*16, allocatable :: hij_cache1(:), hij_cache2(:)
allocate (hij_cache1(mo_num),hij_cache2(mo_num))
if(sp == 3) then ! AB
h1 = p(1,1)
h2 = p(1,2)
do p1=1, mo_num
if(bannedOrb(p1, 1)) cycle
call get_mo_two_e_integrals_complex(p1,h2,h1,mo_num,hij_cache1,mo_integrals_map,mo_integrals_map_2)
do p2=1, mo_num
if(bannedOrb(p2,2)) cycle
if(banned(p1, p2, bant)) cycle ! rentable?
if(p1 == h1 .or. p2 == h2) then
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
! call i_h_j_complex(gen, det, N_int, hij) ! need to take conjugate of this
call i_h_j_complex(det, gen, N_int, hij)
else
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
hij = hij_cache1(p2) * phase
end if
if (hij == (0.d0,0.d0)) cycle
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij ! HOTSPOT
enddo
end do
end do
else ! AA BB
p1 = p(1,sp)
p2 = p(2,sp)
do puti=1, mo_num
if(bannedOrb(puti, sp)) cycle
call get_mo_two_e_integrals_complex(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_complex(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map,mo_integrals_map_2)
do putj=puti+1, mo_num
if(bannedOrb(putj, sp)) cycle
if(banned(puti, putj, bant)) cycle ! rentable?
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
!call i_h_j_complex(gen, det, N_int, hij) ! need to take conjugate of this
call i_h_j_complex(det, gen, N_int, hij)
if (hij == (0.d0,0.d0)) cycle
else
hij = (mo_two_e_integral_complex(p1, p2, puti, putj) - mo_two_e_integral_complex(p2, p1, puti, putj))
if (hij == (0.d0,0.d0)) cycle
hij = dconjg(hij) * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
end if
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
end do
end do
end if
deallocate(hij_cache1,hij_cache2)
end
subroutine get_d1_kpts(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
!todo: indices should be okay for complex?
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
complex*16, intent(in) :: coefs(N_states)
complex*16, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi
complex*16, external :: mo_two_e_integral_complex
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib, k, l
integer :: kp1,ip1, kp2,ip2, khfix,ihfix, kputi,iputi, kputj,iputj, putj0
integer :: kpfix, ipfix, puti0
integer :: kputi1,kputi2,puti01,puti02
integer :: ii0
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
complex*16, allocatable :: hij_cache(:,:),hij_cache2(:,:)
complex*16 :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
complex*16 :: tmp_row_kpts(N_states, mo_num), tmp_row2_kpts(N_states, mo_num)
complex*16 :: tmp_row_kpts2(N_states, mo_num_per_kpt), tmp_row2_kpts2(N_states,mo_num_per_kpt)
complex*16 :: tmp_mat1(N_states,mo_num,mo_num), tmp_mat2(N_states,mo_num,mo_num)
PROVIDE mo_integrals_map N_int
allocate (lbanned(mo_num, 2))
allocate (hij_cache(mo_num,2),hij_cache2(mo_num_per_kpt,2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
call get_kpt_idx_mo(puti,kputi,iputi)
call get_kpt_idx_mo(hfix,khfix,ihfix)
call get_kpt_idx_mo(p1,kp1,ip1)
call get_kpt_idx_mo(p2,kp2,ip2)
if(.not. bannedOrb(puti, mi)) then
!==================
call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
!==================
call get_mo_two_e_integrals_kpts(hfix,ihfix,khfix,p1,ip1,kp1,p2,ip2,kp2,mo_num_per_kpt,hij_cache2(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_kpts(hfix,ihfix,khfix,p2,ip2,kp2,p1,ip1,kp1,mo_num_per_kpt,hij_cache2(1,2),mo_integrals_map,mo_integrals_map_2)
tmp_row = (0.d0,0.d0)
tmp_row_kpts2 = (0.d0,0.d0)
kputj = kconserv(kp1,kp2,khfix)
putj0 = (kputj-1)*mo_num_per_kpt
!==================
do putj=1, hfix-1
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k)
enddo
endif
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k)
enddo
endif
end do
!===========================
! begin kpts testing
do putj = putj0+1, hfix-1
iputj = putj-putj0
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache2(iputj,1) - hij_cache2(iputj,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
!tmp_row_kpts(k,putj) = tmp_row_kpts(k,putj) + hij * coefs(k)
tmp_row_kpts2(k,iputj) = tmp_row_kpts2(k,iputj) + hij * coefs(k)
enddo
endif
end do
do putj = hfix+1,putj0+mo_num_per_kpt
iputj = putj - putj0
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache2(iputj,2) - hij_cache2(iputj,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
!tmp_row_kpts(k,putj) = tmp_row_kpts(k,putj) + hij * coefs(k)
tmp_row_kpts2(k,iputj) = tmp_row_kpts2(k,iputj) + hij * coefs(k)
enddo
endif
end do
! end kpts testing
!===========================================================
!print*,'tmp_row_k,tmp_row'
!do ii0=1,mo_num
! if (cdabs(tmp_row_kpts(1,ii0)-tmp_row(1,ii0)).gt.1.d-12) then
! print'((A),4(I5),2(2(E25.15),2X))','WarNInG, ',ii0,hfix,p1,p2,tmp_row_kpts(1,ii0),tmp_row(1,ii0)
! endif
!enddo
!===========================================================
tmp_mat1 = (0.d0,0.d0)
tmp_mat2 = (0.d0,0.d0)
!===========================================================
if(ma == 1) then
!===========================================================
tmp_mat1(1:N_states,1:mo_num,puti) = tmp_mat1(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
tmp_mat2(1:N_states,putj0+1:putj0+mo_num_per_kpt,puti) = tmp_mat2(1:N_states,putj0+1:putj0+mo_num_per_kpt,puti) + &
tmp_row_kpts2(1:N_states,1:mo_num_per_kpt)
!===========================================================
!mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
mat(1:N_states,putj0+1:putj0+mo_num_per_kpt,puti) = mat(1:N_states,putj0+1:putj0+mo_num_per_kpt,puti) + &
tmp_row_kpts2(1:N_states,1:mo_num_per_kpt)
else
!===========================================================
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_mat1(k,puti,l) = tmp_mat1(k,puti,l) + tmp_row(k,l)
enddo
enddo
do l=1,mo_num_per_kpt
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_mat2(k,puti,l+putj0) = tmp_mat2(k,puti,l+putj0) + tmp_row_kpts2(k,l)
enddo
enddo
!===========================================================
!do l=1,mo_num
! !DIR$ LOOP COUNT AVG(4)
! do k=1,N_states
! mat(k,puti,l) = mat(k,puti,l) + tmp_row(k,l)
! enddo
!enddo
do l=1,mo_num_per_kpt
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,puti,l+putj0) = mat(k,puti,l+putj0) + tmp_row_kpts2(k,l)
enddo
enddo
end if
!===========================================================
do k=1,N_states
do l=1,mo_num
do ii0=1,mo_num
if (cdabs(tmp_mat2(k,l,ii0)-tmp_mat1(k,l,ii0)).gt.1.d-12) then
print'((A),6(I5),2(2(E25.15),2X))','WarNInG 4a, ',k,l,ii0,hfix,p1,p2,tmp_mat2(k,l,ii0),tmp_mat1(k,l,ii0)
! else if ((cdabs(tmp_row_kpts(1,ii0))+cdabs(tmp_row(1,ii0))).gt.1.d-12) then
! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 1b, ',ii0,hfix,pfix,p2,tmp_row_kpts(1,ii0),tmp_row(1,ii0)
endif
enddo
enddo
enddo
!===========================================================
end if
!MOVE MI
pfix = p(1,mi)
call get_kpt_idx_mo(pfix,kpfix,ipfix)
tmp_row = (0.d0,0.d0)
tmp_row2 = (0.d0,0.d0)
!tmp_row_kpts = (0.d0,0.d0)
!tmp_row2_kpts = (0.d0,0.d0)
tmp_row_kpts2 = (0.d0,0.d0)
tmp_row2_kpts2 = (0.d0,0.d0)
!===========================================================
call get_mo_two_e_integrals_complex(hfix,pfix,p1,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_complex(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
!===========================================================
call get_mo_two_e_integrals_kpts(hfix,ihfix,khfix,pfix,ipfix,kpfix,p1,ip1,kp1,mo_num_per_kpt,hij_cache2(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_kpts(hfix,ihfix,khfix,pfix,ipfix,kpfix,p2,ip2,kp2,mo_num_per_kpt,hij_cache2(1,2),mo_integrals_map,mo_integrals_map_2)
putj = p1
!============
!begin ref
do puti=1,mo_num !HOT
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k)
enddo
endif
end if
! enddo
!
putj = p2
! do puti=1,mo_num !HOT
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
do k=1,N_states
tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k)
enddo
endif
end if
end do
!end ref
!===================
!begin kpts
if (kp1.eq.kp2) then
!if (.False.) then
kputi1 = kconserv(kpfix,kp1,khfix)
kputi2 = kputi1
puti01 = (kputi1-1)*mo_num_per_kpt
puti02 = puti01
do iputi=1,mo_num_per_kpt !HOT
puti = puti01 + iputi
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = hij_cache2(iputi,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row_kpts2(k,iputi) = tmp_row_kpts2(k,iputi) + hij * coefs(k)
!tmp_row_kpts(k,puti) = tmp_row_kpts(k,puti) + hij * coefs(k)
enddo
endif
end if
! enddo
!
putj = p2
! do puti=1,mo_num !HOT
if(.not. banned(putj,puti,bant)) then
hij = hij_cache2(iputi,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
do k=1,N_states
tmp_row2_kpts2(k,iputi) = tmp_row2_kpts2(k,iputi) + hij * coefs(k)
!tmp_row2_kpts(k,puti) = tmp_row2_kpts(k,puti) + hij * coefs(k)
enddo
endif
end if
end do
else !kp1.ne.kp2
kputi2 = kconserv(kpfix,kp2,khfix)
puti02 = (kputi2-1)*mo_num_per_kpt
putj = p1
do iputi=1,mo_num_per_kpt !HOT
puti = puti02 + iputi
if(lbanned(puti,mi)) cycle
!p1 fixed
if(.not. banned(putj,puti,bant)) then
hij = hij_cache2(iputi,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row_kpts2(k,iputi) = tmp_row_kpts2(k,iputi) + hij * coefs(k)
!tmp_row_kpts(k,puti) = tmp_row_kpts(k,puti) + hij * coefs(k)
enddo
endif
end if
enddo
!
putj = p2
kputi1 = kconserv(kpfix,kp1,khfix)
puti01 = (kputi1-1)*mo_num_per_kpt
do iputi=1,mo_num_per_kpt !HOT
puti = puti01 + iputi
if(lbanned(puti,mi)) cycle
if(.not. banned(putj,puti,bant)) then
hij = hij_cache2(iputi,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
do k=1,N_states
tmp_row2_kpts2(k,iputi) = tmp_row2_kpts2(k,iputi) + hij * coefs(k)
!tmp_row2_kpts(k,puti) = tmp_row2_kpts(k,puti) + hij * coefs(k)
enddo
endif
end if
end do
endif
!end kpts
!===================
!test printing
!print'((A),5(I5))','kpt info1: ',kconserv(kpfix,kp2,khfix),khfix,kpfix,kp2,kputi2
!print'((A),5(I5))','kpt info2: ',kconserv(kpfix,kp1,khfix),khfix,kpfix,kp1,kputi1
!do ii0=1,mo_num
! if (cdabs(tmp_row_kpts(1,ii0)-tmp_row(1,ii0)).gt.1.d-12) then
! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 1a, ',ii0,hfix,pfix,p2,tmp_row_kpts(1,ii0),tmp_row(1,ii0)
!! else if ((cdabs(tmp_row_kpts(1,ii0))+cdabs(tmp_row(1,ii0))).gt.1.d-12) then
!! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 1b, ',ii0,hfix,pfix,p2,tmp_row_kpts(1,ii0),tmp_row(1,ii0)
! endif
! if (cdabs(tmp_row2_kpts(1,ii0)-tmp_row2(1,ii0)).gt.1.d-12) then
! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 2a, ',ii0,hfix,pfix,p1,tmp_row2_kpts(1,ii0),tmp_row2(1,ii0)
!! else if ((cdabs(tmp_row2_kpts(1,ii0))+cdabs(tmp_row2(1,ii0))).gt.1.d-12) then
!! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 2b, ',ii0,hfix,pfix,p1,tmp_row2_kpts(1,ii0),tmp_row2(1,ii0)
! endif
!enddo
!===================
tmp_mat1 = (0.d0,0.d0)
tmp_mat2 = (0.d0,0.d0)
if(mi == 1) then
!===================
tmp_mat1(:,:,p1) = tmp_mat1(:,:,p1) + tmp_row(:,:)
tmp_mat1(:,:,p2) = tmp_mat1(:,:,p2) + tmp_row2(:,:)
tmp_mat2(:,puti02+1:puti02+mo_num_per_kpt,p1) = tmp_mat2(:,puti02+1:puti02+mo_num_per_kpt,p1) + tmp_row_kpts2(:,:)
tmp_mat2(:,puti01+1:puti01+mo_num_per_kpt,p2) = tmp_mat2(:,puti01+1:puti01+mo_num_per_kpt,p2) + tmp_row2_kpts2(:,:)
!===================
!mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:)
!mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:)
mat(:,puti02+1:puti02+mo_num_per_kpt,p1) = mat(:,puti02+1:puti02+mo_num_per_kpt,p1) + tmp_row_kpts2(:,:)
mat(:,puti01+1:puti01+mo_num_per_kpt,p2) = mat(:,puti01+1:puti01+mo_num_per_kpt,p2) + tmp_row2_kpts2(:,:)
else
!===================
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_mat1(k,p1,l) = tmp_mat1(k,p1,l) + tmp_row(k,l)
tmp_mat1(k,p2,l) = tmp_mat1(k,p2,l) + tmp_row2(k,l)
enddo
enddo
do l=1,mo_num_per_kpt
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_mat2(k,p1,l+puti02) = tmp_mat2(k,p1,l+puti02) + tmp_row_kpts2(k,l)
tmp_mat2(k,p2,l+puti01) = tmp_mat2(k,p2,l+puti01) + tmp_row2_kpts2(k,l)
enddo
enddo
!===================
!do l=1,mo_num
! !DIR$ LOOP COUNT AVG(4)
! do k=1,N_states
! mat(k,p1,l) = mat(k,p1,l) + tmp_row(k,l)
! mat(k,p2,l) = mat(k,p2,l) + tmp_row2(k,l)
! enddo
!enddo
do l=1,mo_num_per_kpt
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p1,l+puti02) = mat(k,p1,l+puti02) + tmp_row_kpts2(k,l)
mat(k,p2,l+puti01) = mat(k,p2,l+puti01) + tmp_row2_kpts2(k,l)
enddo
enddo
end if
!===========================================================
do k=1,N_states
do l=1,mo_num
do ii0=1,mo_num
if (cdabs(tmp_mat2(k,l,ii0)-tmp_mat1(k,l,ii0)).gt.1.d-12) then
print'((A),7(I5),2(2(E25.15),2X))','WarNInG 5a, ',k,l,ii0,hfix,pfix,p1,p2,tmp_mat2(k,l,ii0),tmp_mat1(k,l,ii0)
! else if ((cdabs(tmp_row_kpts(1,ii0))+cdabs(tmp_row(1,ii0))).gt.1.d-12) then
! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 1b, ',ii0,hfix,pfix,p2,tmp_row_kpts(1,ii0),tmp_row(1,ii0)
endif
enddo
enddo
enddo
!===========================================================
!todo: kpts okay up to this point in get_d1_complex
else ! sp /= 3
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
call get_kpt_idx_mo(puti,kputi,iputi)
call get_kpt_idx_mo(hfix,khfix,ihfix)
call get_kpt_idx_mo(p1,kp1,ip1)
call get_kpt_idx_mo(p2,kp2,ip2)
call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_kpts(hfix,ihfix,khfix,p1,ip1,kp1,p2,ip2,kp2,mo_num_per_kpt,hij_cache2(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_kpts(hfix,ihfix,khfix,p2,ip2,kp2,p1,ip1,kp1,mo_num_per_kpt,hij_cache2(1,2),mo_integrals_map,mo_integrals_map_2)
tmp_row = (0.d0,0.d0)
!tmp_row_kpts = (0.d0,0.d0)
tmp_row_kpts2 = (0.d0,0.d0)
!===================
!begin ref
do putj=1,hfix-1
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
endif
end do
do putj=hfix+1,mo_num
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
endif
end do
!end ref
!=================
!begin kpts
kputj = kconserv(kp1,kp2,khfix)
putj0 = (kputj-1)*mo_num_per_kpt
do putj = putj0+1,hfix-1
iputj = putj - putj0
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache2(iputj,1) - hij_cache2(iputj,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
!tmp_row_kpts(:,putj) = tmp_row_kpts(:,putj) + hij * coefs(:)
tmp_row_kpts2(:,iputj) = tmp_row_kpts2(:,iputj) + hij * coefs(:)
endif
end do
do putj=hfix+1,putj0+mo_num_per_kpt
iputj = putj - putj0
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache2(iputj,2) - hij_cache2(iputj,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
!tmp_row_kpts(:,putj) = tmp_row_kpts(:,putj) + hij * coefs(:)
tmp_row_kpts2(:,iputj) = tmp_row_kpts2(:,iputj) + hij * coefs(:)
endif
end do
!end kpts
!do ii0=1,mo_num
! if (cdabs(tmp_row_kpts(1,ii0)-tmp_row(1,ii0)).gt.1.d-12) then
! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 1a, ',ii0,hfix,pfix,p2,tmp_row_kpts(1,ii0),tmp_row(1,ii0)
!! else if ((cdabs(tmp_row_kpts(1,ii0))+cdabs(tmp_row(1,ii0))).gt.1.d-12) then
!! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 1b, ',ii0,hfix,pfix,p2,tmp_row_kpts(1,ii0),tmp_row(1,ii0)
! endif
!enddo
!=================
tmp_mat1 = (0.d0,0.d0)
tmp_mat2 = (0.d0,0.d0)
tmp_mat1(:, :puti-1, puti) = tmp_mat1(:, :puti-1, puti) + tmp_row(:,:puti-1)
do l=puti,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_mat1(k, puti, l) = tmp_mat1(k, puti,l) + tmp_row(k,l)
enddo
enddo
!=================
if (kputj.lt.kputi) then
tmp_mat2(1:N_states,putj0+1:putj0+mo_num_per_kpt,puti) = &
tmp_mat2(1:N_states,putj0+1:putj0+mo_num_per_kpt,puti) + &
tmp_row_kpts2(1:N_states,1:mo_num_per_kpt)
else if (kputj.gt.kputi) then
do l=1,mo_num_per_kpt
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_mat2(k, puti, l+putj0) = tmp_mat2(k, puti,l+putj0) + tmp_row_kpts2(k,l)
enddo
enddo
else !kputj == kputi
tmp_mat2(1:N_states,putj0+1:puti-1,puti) = &
tmp_mat2(1:N_states,putj0+1:puti-1,puti) + &
tmp_row_kpts2(1:N_states,1:iputi-1)
do l=iputi,mo_num_per_kpt
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_mat2(k, puti, l+putj0) = tmp_mat2(k, puti,l+putj0) + tmp_row_kpts2(k,l)
enddo
enddo
endif
!=================
do k=1,N_states
do l=1,mo_num
do ii0=1,mo_num
if (cdabs(tmp_mat2(k,l,ii0)-tmp_mat1(k,l,ii0)).gt.1.d-12) then
print'((A),6(I5),2(2(E25.15),2X))','WarNInG 3a, ',k,l,ii0,hfix,p1,p2,tmp_mat2(k,l,ii0),tmp_mat1(k,l,ii0)
! else if ((cdabs(tmp_row_kpts(1,ii0))+cdabs(tmp_row(1,ii0))).gt.1.d-12) then
! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 1b, ',ii0,hfix,pfix,p2,tmp_row_kpts(1,ii0),tmp_row(1,ii0)
endif
enddo
enddo
enddo
!=================
mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1)
do l=puti,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k, puti, l) = mat(k, puti,l) + tmp_row(k,l)
enddo
enddo
!!=================
!!todo: check for iputi=1,2
!if (kputj.lt.kputi) then
! mat(1:N_states,putj0+1:putj0+mo_num_per_kpt,puti) = &
! mat(1:N_states,putj0+1:putj0+mo_num_per_kpt,puti) + &
! tmp_row_kpts2(1:N_states,1:mo_num_per_kpt)
!else if (kputj.gt.kputi) then
! do l=1,mo_num_per_kpt
! !DIR$ LOOP COUNT AVG(4)
! do k=1,N_states
! mat(k, puti, l+putj0) = mat(k, puti,l+putj0) + tmp_row_kpts2(k,l)
! enddo
! enddo
!else !kputj == kputi
! mat(1:N_states,putj0+1:puti-1,puti) = &
! mat(1:N_states,putj0+1:puti-1,puti) + &
! tmp_row_kpts2(1:N_states,1:iputi-1)
! do l=iputi,mo_num_per_kpt
! !DIR$ LOOP COUNT AVG(4)
! do k=1,N_states
! mat(k, puti, l+putj0) = mat(k, puti,l+putj0) + tmp_row_kpts2(k,l)
! enddo
! enddo
!endif
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
call get_kpt_idx_mo(pfix,kpfix,ipfix)
call get_kpt_idx_mo(hfix,khfix,ihfix)
call get_kpt_idx_mo(p1,kp1,ip1)
call get_kpt_idx_mo(p2,kp2,ip2)
tmp_row = (0.d0,0.d0)
tmp_row2 = (0.d0,0.d0)
!tmp_row_kpts = (0.d0,0.d0)
!tmp_row2_kpts = (0.d0,0.d0)
call get_mo_two_e_integrals_complex(hfix,p1,pfix,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
call get_mo_two_e_integrals_complex(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
!call get_mo_two_e_integrals_kpts(hfix,ihfix,khfix,p1,ip1,kp1,pfix,ipfix,kpfix,mo_num_per_kpt,hij_cache2(1,1),mo_integrals_map,mo_integrals_map_2)
!call get_mo_two_e_integrals_kpts(hfix,ihfix,khfix,p2,ip2,kp2,pfix,ipfix,kpfix,mo_num_per_kpt,hij_cache2(1,2),mo_integrals_map,mo_integrals_map_2)
!===============
!begin ref
putj = p2
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,1)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k)
enddo
endif
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,2)
if (hij /= (0.d0,0.d0)) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
do k=1,N_states
tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k)
enddo
endif
end if
end do
!end ref
!===============
!begin kpts
!todo: combine if kp1==kp2
! putj = p2
! kputi1 = kconserv(kp1,kpfix,khfix)
! puti01 = (kputi1-1)*mo_num_per_kpt
! do iputi=1,mo_num_per_kpt
! puti = puti01 + iputi
! if(lbanned(puti,ma)) cycle
! if(.not. banned(puti,putj,1)) then
! hij = hij_cache2(iputi,1)
! if (hij /= (0.d0,0.d0)) then
! hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
! !DIR$ LOOP COUNT AVG(4)
! do k=1,N_states
! tmp_row_kpts(k,puti) = tmp_row_kpts(k,puti) + hij * coefs(k)
! enddo
! endif
! end if
! enddo
! putj = p1
! kputi2 = kconserv(kp2,kpfix,khfix)
! puti02 = (kputi2-1)*mo_num_per_kpt
! do iputi=1,mo_num_per_kpt
! puti = puti02 + iputi
! if(lbanned(puti,ma)) cycle
! if(.not. banned(puti,putj,1)) then
! hij = hij_cache2(iputi,2)
! if (hij /= (0.d0,0.d0)) then
! hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
! do k=1,N_states
! tmp_row2_kpts(k,puti) = tmp_row2_kpts(k,puti) + hij * coefs(k)
! enddo
! endif
! end if
! end do
! !end kpts
! !===============
! !test printing
! !print'((A),5(I5))','kpt info1: ',kconserv(kpfix,kp2,khfix),khfix,kpfix,kp2,kputi2
! !print'((A),5(I5))','kpt info2: ',kconserv(kpfix,kp1,khfix),khfix,kpfix,kp1,kputi1
! do ii0=1,mo_num
! if (cdabs(tmp_row_kpts(1,ii0)-tmp_row(1,ii0)).gt.1.d-12) then
! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 1a, ',ii0,hfix,p1,pfix,tmp_row_kpts(1,ii0),tmp_row(1,ii0)
! ! else if ((cdabs(tmp_row_kpts(1,ii0))+cdabs(tmp_row(1,ii0))).gt.1.d-12) then
! ! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 1b, ',ii0,hfix,pfix,p2,tmp_row_kpts(1,ii0),tmp_row(1,ii0)
! endif
! if (cdabs(tmp_row2_kpts(1,ii0)-tmp_row2(1,ii0)).gt.1.d-12) then
! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 2a, ',ii0,hfix,p2,pfix,tmp_row2_kpts(1,ii0),tmp_row2(1,ii0)
! ! else if ((cdabs(tmp_row2_kpts(1,ii0))+cdabs(tmp_row2(1,ii0))).gt.1.d-12) then
! ! print'((A),4(I5),2(2(E25.15),2X))','WarNInG 2b, ',ii0,hfix,pfix,p1,tmp_row2_kpts(1,ii0),tmp_row2(1,ii0)
! endif
! enddo
!===================
mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1)
do l=p2,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p2,l) = mat(k,p2,l) + tmp_row(k,l)
enddo
enddo
mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1)
do l=p1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat(k,p1,l) = mat(k,p1,l) + tmp_row2(k,l)
enddo
enddo
end if
end if
deallocate(lbanned,hij_cache)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
! gen is a selector; mask is ionized generator; det is alpha
! hij is contribution to <psi|H|alpha>
call i_h_j_complex(gen, det, N_int, hij)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * dconjg(hij)
enddo
end do
end do
end