9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-13 08:05:17 +02:00
qp2/src/determinants/density_matrix_cplx.irp.f
2020-03-19 09:48:55 -05:00

312 lines
10 KiB
Fortran

BEGIN_PROVIDER [ complex*16, one_e_dm_mo_alpha_average_complex, (mo_num,mo_num) ]
&BEGIN_PROVIDER [ complex*16, one_e_dm_mo_beta_average_complex, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! $\alpha$ and $\beta$ one-body density matrix for each state
END_DOC
integer :: i
one_e_dm_mo_alpha_average_complex = (0.d0,0.d0)
one_e_dm_mo_beta_average_complex = (0.d0,0.d0)
do i = 1,N_states
one_e_dm_mo_alpha_average_complex(:,:) += one_e_dm_mo_alpha_complex(:,:,i) * state_average_weight(i)
one_e_dm_mo_beta_average_complex(:,:) += one_e_dm_mo_beta_complex(:,:,i) * state_average_weight(i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_mo_diff_complex, (mo_num,mo_num,2:N_states) ]
implicit none
BEGIN_DOC
! Difference of the one-body density matrix with respect to the ground state
END_DOC
integer :: i,j, istate
do istate=2,N_states
do j=1,mo_num
do i=1,mo_num
one_e_dm_mo_diff_complex(i,j,istate) = &
one_e_dm_mo_alpha_complex(i,j,istate) - one_e_dm_mo_alpha_complex(i,j,1) +&
one_e_dm_mo_beta_complex (i,j,istate) - one_e_dm_mo_beta_complex (i,j,1)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_mo_spin_index_complex, (mo_num,mo_num,N_states,2) ]
implicit none
integer :: i,j,ispin,istate
ispin = 1
do istate = 1, N_states
do j = 1, mo_num
do i = 1, mo_num
one_e_dm_mo_spin_index_complex(i,j,istate,ispin) = one_e_dm_mo_alpha_complex(i,j,istate)
enddo
enddo
enddo
ispin = 2
do istate = 1, N_states
do j = 1, mo_num
do i = 1, mo_num
one_e_dm_mo_spin_index_complex(i,j,istate,ispin) = one_e_dm_mo_beta_complex(i,j,istate)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_dagger_mo_spin_index_complex, (mo_num,mo_num,N_states,2) ]
print*,irp_here,' not implemented for complex'
stop -1
! implicit none
! integer :: i,j,ispin,istate
! ispin = 1
! do istate = 1, N_states
! do j = 1, mo_num
! one_e_dm_dagger_mo_spin_index(j,j,istate,ispin) = 1 - one_e_dm_mo_alpha(j,j,istate)
! do i = j+1, mo_num
! one_e_dm_dagger_mo_spin_index(i,j,istate,ispin) = -one_e_dm_mo_alpha(i,j,istate)
! one_e_dm_dagger_mo_spin_index(j,i,istate,ispin) = -one_e_dm_mo_alpha(i,j,istate)
! enddo
! enddo
! enddo
!
! ispin = 2
! do istate = 1, N_states
! do j = 1, mo_num
! one_e_dm_dagger_mo_spin_index(j,j,istate,ispin) = 1 - one_e_dm_mo_beta(j,j,istate)
! do i = j+1, mo_num
! one_e_dm_dagger_mo_spin_index(i,j,istate,ispin) = -one_e_dm_mo_beta(i,j,istate)
! one_e_dm_dagger_mo_spin_index(j,i,istate,ispin) = -one_e_dm_mo_beta(i,j,istate)
! enddo
! enddo
! enddo
!
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_mo_alpha_complex, (mo_num,mo_num,N_states) ]
&BEGIN_PROVIDER [ complex*16, one_e_dm_mo_beta_complex, (mo_num,mo_num,N_states) ]
implicit none
BEGIN_DOC
! $\alpha$ and $\beta$ one-body density matrix for each state
! $\gamma_{\mu\nu} = \langle\Psi|a_{\nu}^{\dagger}a_{\mu}|\Psi\rangle$
! $\gamma_{\mu\nu} = \langle a_{\nu} \Psi|a_{\mu} \Psi\rangle$
! $\gamma_{\mu\nu} = \sum_{IJ} c^*_J c_I \langle a_{\nu} I|a_{\mu} J\rangle$
END_DOC
integer :: j,k,l,m,k_a,k_b
integer :: occ(N_int*bit_kind_size,2)
complex*16 :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int)
integer :: exc(0:2,2),n_occ(2)
complex*16, allocatable :: tmp_a(:,:,:), tmp_b(:,:,:)
integer :: krow, kcol, lrow, lcol
PROVIDE psi_det psi_coef_complex
one_e_dm_mo_alpha_complex = (0.d0,0.d0)
one_e_dm_mo_beta_complex = (0.d0,0.d0)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,k_a,k_b,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc,&
!$OMP tmp_a, tmp_b, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2)&
!$OMP SHARED(psi_det,psi_coef_complex,N_int,N_states,elec_alpha_num, &
!$OMP elec_beta_num,one_e_dm_mo_alpha_complex,one_e_dm_mo_beta_complex,N_det,&
!$OMP mo_num,psi_bilinear_matrix_rows,psi_bilinear_matrix_columns,&
!$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns,&
!$OMP psi_bilinear_matrix_order_reverse, psi_det_alpha_unique, psi_det_beta_unique,&
!$OMP psi_bilinear_matrix_values_complex, psi_bilinear_matrix_transp_values_complex,&
!$OMP N_det_alpha_unique,N_det_beta_unique,irp_here)
allocate(tmp_a(mo_num,mo_num,N_states), tmp_b(mo_num,mo_num,N_states) )
tmp_a = (0.d0,0.d0)
!$OMP DO SCHEDULE(dynamic,64)
do k_a=1,N_det
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
! -------------
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
do m=1,N_states
ck = cdabs(psi_bilinear_matrix_values_complex(k_a,m)*psi_bilinear_matrix_values_complex(k_a,m))
do l=1,elec_alpha_num
j = occ(l,1)
tmp_a(j,j,m) += ck
enddo
enddo
if (k_a == N_det) cycle
l = k_a+1
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
! Fix beta determinant, loop over alphas
do while ( lcol == kcol )
tmp_det2(:) = psi_det_alpha_unique(:, lrow)
call get_excitation_degree_spin(tmp_det(1,1),tmp_det2,degree,N_int)
if (degree == 1) then
exc = 0
call get_single_excitation_spin(tmp_det(1,1),tmp_det2,exc,phase,N_int)
call decode_exc_spin(exc,h1,p1,h2,p2)
! h1 occ in k
! p1 occ in l
do m=1,N_states
ckl = dconjg(psi_bilinear_matrix_values_complex(k_a,m))*psi_bilinear_matrix_values_complex(l,m) * phase
tmp_a(h1,p1,m) += dconjg(ckl)
tmp_a(p1,h1,m) += ckl
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_e_dm_mo_alpha_complex(:,:,:) = one_e_dm_mo_alpha_complex(:,:,:) + tmp_a(:,:,:)
!$OMP END CRITICAL
deallocate(tmp_a)
tmp_b = (0.d0,0.d0)
!$OMP DO SCHEDULE(dynamic,64)
do k_b=1,N_det
krow = psi_bilinear_matrix_transp_rows(k_b)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_transp_columns(k_b)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol)
! Diagonal part
! -------------
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
do m=1,N_states
ck = cdabs(psi_bilinear_matrix_transp_values_complex(k_b,m)*psi_bilinear_matrix_transp_values_complex(k_b,m))
do l=1,elec_beta_num
j = occ(l,2)
tmp_b(j,j,m) += ck
enddo
enddo
if (k_b == N_det) cycle
l = k_b+1
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
! Fix beta determinant, loop over alphas
do while ( lrow == krow )
tmp_det2(:) = psi_det_beta_unique(:, lcol)
call get_excitation_degree_spin(tmp_det(1,2),tmp_det2,degree,N_int)
if (degree == 1) then
exc = 0
call get_single_excitation_spin(tmp_det(1,2),tmp_det2,exc,phase,N_int)
call decode_exc_spin(exc,h1,p1,h2,p2)
do m=1,N_states
ckl = dconjg(psi_bilinear_matrix_transp_values_complex(k_b,m))*psi_bilinear_matrix_transp_values_complex(l,m) * phase
tmp_b(h1,p1,m) += dconjg(ckl)
tmp_b(p1,h1,m) += ckl
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_e_dm_mo_beta_complex(:,:,:) = one_e_dm_mo_beta_complex(:,:,:) + tmp_b(:,:,:)
!$OMP END CRITICAL
deallocate(tmp_b)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_mo_complex, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! One-body density matrix
END_DOC
one_e_dm_mo_complex = one_e_dm_mo_alpha_average_complex + one_e_dm_mo_beta_average_complex
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_spin_density_mo_complex, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! $\rho(\alpha) - \rho(\beta)$
END_DOC
one_e_spin_density_mo_complex = one_e_dm_mo_alpha_average_complex - one_e_dm_mo_beta_average_complex
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_spin_density_ao_complex, (ao_num,ao_num) ]
BEGIN_DOC
! One body spin density matrix on the |AO| basis : $\rho_{AO}(\alpha) - \rho_{AO}(\beta)$
! todo: verify that this is correct for complex
! equivalent to using mo_to_ao_no_overlap?
END_DOC
implicit none
integer :: i,j,k,l
complex*16 :: dm_mo
one_e_spin_density_ao_complex = (0.d0,0.d0)
do k = 1, ao_num
do l = 1, ao_num
do i = 1, mo_num
do j = 1, mo_num
dm_mo = one_e_spin_density_mo_complex(j,i)
! if(dabs(dm_mo).le.1.d-10)cycle
one_e_spin_density_ao_complex(l,k) += dconjg(mo_coef_complex(k,i)) * mo_coef_complex(l,j) * dm_mo
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, one_e_dm_ao_alpha_complex, (ao_num,ao_num) ]
&BEGIN_PROVIDER [ complex*16, one_e_dm_ao_beta_complex, (ao_num,ao_num) ]
BEGIN_DOC
! One body density matrix on the |AO| basis : $\rho_{AO}(\alpha), \rho_{AO}(\beta)$.
END_DOC
implicit none
integer :: i,j,k,l
complex*16 :: mo_alpha,mo_beta
one_e_dm_ao_alpha_complex = (0.d0,0.d0)
one_e_dm_ao_beta_complex = (0.d0,0.d0)
do k = 1, ao_num
do l = 1, ao_num
do i = 1, mo_num
do j = 1, mo_num
mo_alpha = one_e_dm_mo_alpha_average_complex(j,i)
mo_beta = one_e_dm_mo_beta_average_complex(j,i)
! if(dabs(dm_mo).le.1.d-10)cycle
one_e_dm_ao_alpha_complex(l,k) += dconjg(mo_coef_complex(k,i)) * mo_coef_complex(l,j) * mo_alpha
one_e_dm_ao_beta_complex(l,k) += dconjg(mo_coef_complex(k,i)) * mo_coef_complex(l,j) * mo_beta
enddo
enddo
enddo
enddo
END_PROVIDER