9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-27 13:53:29 +01:00
qp2/plugins/local/casscf_tc_bi/grad_old.irp.f

135 lines
4.4 KiB
Fortran

BEGIN_PROVIDER [real*8, gradvec_detail_right_old, (0:3,nMonoEx)]
&BEGIN_PROVIDER [real*8, gradvec_detail_left_old, (0:3,nMonoEx)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
! each determinant I we determine the string E_pq |I> (alpha and beta
! separately) and generate <Psi|H E_pq |I>
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
! gradient
! E_pq = a^+_pa_q + a^+_Pa_Q
END_DOC
implicit none
integer :: ii,tt,aa,indx,ihole,ipart,istate,ll
real*8 :: res_l(0:3), res_r(0:3)
do ii = 1, n_core_inact_orb
ihole = list_core_inact(ii)
do aa = 1, n_virt_orb
ipart = list_virt(aa)
indx = mat_idx_c_v(ii,aa)
call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
do ll = 0, 3
gradvec_detail_left_old (ll,indx)=res_l(ll)
gradvec_detail_right_old(ll,indx)=res_r(ll)
enddo
enddo
enddo
do ii = 1, n_core_inact_orb
ihole = list_core_inact(ii)
do tt = 1, n_act_orb
ipart = list_act(tt)
indx = mat_idx_c_a(ii,tt)
call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
do ll = 0, 3
gradvec_detail_left_old (ll,indx)=res_l(ll)
gradvec_detail_right_old(ll,indx)=res_r(ll)
enddo
enddo
enddo
! print*,'old grad'
do tt = 1, n_act_orb
ihole = list_act(tt)
do aa = 1, n_virt_orb
ipart = list_virt(aa)
indx = mat_idx_a_v(tt,aa)
! print*,indx,tt,aa
call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
do ll = 0, 3
gradvec_detail_left_old (ll,indx)=res_l(ll)
gradvec_detail_right_old(ll,indx)=res_r(ll)
enddo
enddo
enddo
real*8 :: norm_grad_left, norm_grad_right
norm_grad_left=0.d0
norm_grad_right=0.d0
do indx=1,nMonoEx
norm_grad_left+=gradvec_detail_left_old(0,indx)*gradvec_detail_left_old(0,indx)
norm_grad_right+=gradvec_detail_right_old(0,indx)*gradvec_detail_right_old(0,indx)
end do
norm_grad_left=sqrt(norm_grad_left)
norm_grad_right=sqrt(norm_grad_right)
! if (bavard) then
write(6,*)
write(6,*) ' Norm of the LEFT orbital gradient (via <0|EH|0>) : ', norm_grad_left
write(6,*) ' Norm of the RIGHT orbital gradient (via <0|HE|0>) : ', norm_grad_right
write(6,*)
! endif
END_PROVIDER
subroutine calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
BEGIN_DOC
! Computes the gradient with respect to orbital rotation BRUT FORCE
!
! res_l = <Chi| E_qp H^tc | Phi>
!
! res_r = <Chi| H^tc E_pq | Phi>
!
! q=hole, p=particle. NOTE that on res_l it is E_qp and on res_r it is E_pq
!
! res_l(0) = total matrix element, res_l(1) = one-electron part,
!
! res_l(2) = two-electron part, res_l(3) = three-electron part
!
END_DOC
implicit none
integer, intent(in) :: ihole,ipart
double precision, intent(out) :: res_l(0:3), res_r(0:3)
integer :: mu,iii,ispin,ierr,nu,istate,ll
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
real*8 :: chi_H_mu_ex_array(0:3,N_states),mu_ex_H_phi_array(0:3,N_states),phase
allocate(det_mu(N_int,2))
allocate(det_mu_ex(N_int,2))
res_l=0.D0
res_r=0.D0
do mu=1,n_det
! get the string of the determinant |mu>
call det_extract(det_mu,mu,N_int)
do ispin=1,2
! do the monoexcitation on it: |det_mu_ex> = a^dagger_{p,ispin} a_{q,ispin} |mu>
call det_copy(det_mu,det_mu_ex,N_int)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr)
! |det_mu_ex> = a^dagger_{p,ispin} a_{q,ispin} |mu>
if (ierr.eq.1) then
call i_H_tc_psi_phi(det_mu_ex,psi_det,psi_l_coef_bi_ortho,psi_r_coef_bi_ortho,N_int &
,N_det,psi_det_size,N_states,chi_H_mu_ex_array,mu_ex_H_phi_array)
! chi_H_mu_ex_array = <Chi|H E_qp |mu >
! mu_ex_H_phi_array = <mu |E_qp H |Phi>
do istate=1,N_states
do ll = 0,3 ! loop over the body components (1e,2e,3e)
!res_l = \sum_mu c_mu^l <mu|E_qp H |Phi> = <Chi|E_qp H |Phi>
res_l(ll)+= mu_ex_H_phi_array(ll,istate)*psi_l_coef_bi_ortho(mu,istate)*phase
!res_r = \sum_mu c_mu^r <Chi|H E_qp |mu> = <Chi|H E_qp |Phi>
res_r(ll)+= chi_H_mu_ex_array(ll,istate)*psi_r_coef_bi_ortho(mu,istate)*phase
enddo
end do
end if
end do
end do
! state-averaged gradient
res_l*=1.d0/dble(N_states)
res_r*=1.d0/dble(N_states)
end