9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-08 08:54:44 +02:00
qp2/src/trexio/export_trexio_routines.irp.f

654 lines
18 KiB
Fortran

subroutine export_trexio(update,full_path)
use trexio
implicit none
BEGIN_DOC
! Exports the wave function in TREXIO format
END_DOC
logical, intent(in) :: update, full_path
integer(trexio_t) :: f(N_states) ! TREXIO file handle
integer(trexio_exit_code) :: rc
integer :: k, iunit
double precision, allocatable :: factor(:)
character*(256) :: filenames(N_states), fp
character :: rw
integer, external :: getunitandopen
if (full_path) then
fp = trexio_filename
call system('realpath '//trim(fp)//' > '//trim(fp)//'.tmp')
iunit = getunitandopen(trim(fp)//'.tmp','r')
read(iunit,'(A)') trexio_filename
close(iunit, status='delete')
endif
filenames(1) = trexio_filename
do k=2,N_states
write(filenames(k),'(A,I3.3)') trim(trexio_filename)//'.', k-1
enddo
do k=1,N_states
print *, 'TREXIO file : ', trim(filenames(k))
if (update) then
call system('test -f '//trim(filenames(k))//' && cp -r '//trim(filenames(k))//' '//trim(filenames(k))//'.bak')
else
call system('test -f '//trim(filenames(k))//' && mv '//trim(filenames(k))//' '//trim(filenames(k))//'.bak')
endif
enddo
print *, ''
if (update) then
rw = 'u'
else
rw = 'w'
endif
do k=1,N_states
if (backend == 0) then
f(k) = trexio_open(filenames(k), rw, TREXIO_HDF5, rc)
else if (backend == 1) then
f(k) = trexio_open(filenames(k), rw, TREXIO_TEXT, rc)
endif
if (f(k) == 0_8) then
print *, 'Unable to open TREXIO file for writing'
print *, 'rc = ', rc
stop -1
endif
enddo
call ezfio_set_trexio_trexio_file(trexio_filename)
! ------------------------------------------------------------------------------
! Electrons
! ---------
print *, 'Electrons'
rc = trexio_write_electron_up_num(f(1), elec_alpha_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_electron_dn_num(f(1), elec_beta_num)
call trexio_assert(rc, TREXIO_SUCCESS)
! Nuclei
! ------
print *, 'Nuclei'
rc = trexio_write_nucleus_num(f(1), nucl_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_charge(f(1), nucl_charge)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_coord(f(1), nucl_coord_transp)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_label(f(1), nucl_label, 32)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_repulsion(f(1), nuclear_repulsion)
call trexio_assert(rc, TREXIO_SUCCESS)
! Pseudo-potentials
! -----------------
if (do_pseudo) then
print *, 'ECP'
integer :: num
num = 0
do k=1,pseudo_klocmax
do i=1,nucl_num
if (pseudo_dz_k(i,k) /= 0.d0) then
num = num+1
end if
end do
end do
do l=0,pseudo_lmax
do k=1,pseudo_kmax
do i=1,nucl_num
if (pseudo_dz_kl(i,k,l) /= 0.d0) then
num = num+1
end if
end do
end do
end do
integer, allocatable :: ang_mom(:), nucleus_index(:), power(:), lmax(:)
double precision, allocatable :: exponent(:), coefficient(:)
allocate(ang_mom(num), nucleus_index(num), exponent(num), coefficient(num), power(num), &
lmax(nucl_num) )
do i=1,nucl_num
lmax(i) = -1
do l=0,pseudo_lmax
do k=1,pseudo_kmax
if (pseudo_dz_kl_transp(k,l,i) /= 0.d0) then
lmax(i) = max(lmax(i), l)
end if
end do
end do
end do
j = 0
do i=1,nucl_num
do k=1,pseudo_klocmax
if (pseudo_dz_k_transp(k,i) /= 0.d0) then
j = j+1
ang_mom(j) = lmax(i)+1
nucleus_index(j) = i
exponent(j) = pseudo_dz_k_transp(k,i)
coefficient(j) = pseudo_v_k_transp(k,i)
power(j) = pseudo_n_k_transp(k,i)
end if
end do
do l=0,lmax(i)
do k=1,pseudo_kmax
if (pseudo_dz_kl_transp(k,l,i) /= 0.d0) then
j = j+1
ang_mom(j) = l
nucleus_index(j) = i
exponent(j) = pseudo_dz_kl_transp(k,l,i)
coefficient(j) = pseudo_v_kl_transp(k,l,i)
power(j) = pseudo_n_kl_transp(k,l,i)
end if
end do
end do
end do
lmax(:) = lmax(:)+1
rc = trexio_write_ecp_max_ang_mom_plus_1(f(1), lmax)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_z_core(f(1), int(nucl_charge_remove))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_num(f(1), num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_ang_mom(f(1), ang_mom)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_nucleus_index(f(1), nucleus_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_exponent(f(1), exponent)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_coefficient(f(1), coefficient)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_power(f(1), power)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
if (export_basis) then
! Basis
! -----
print *, 'Basis'
rc = trexio_write_basis_type(f(1), 'Gaussian', len('Gaussian'))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_prim_num(f(1), prim_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_num(f(1), shell_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_nucleus_index(f(1), basis_nucleus_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_ang_mom(f(1), shell_ang_mom)
call trexio_assert(rc, TREXIO_SUCCESS)
allocate(factor(shell_num))
! if (ao_normalized) then
! factor(1:shell_num) = shell_normalization_factor(1:shell_num)
! else
factor(1:shell_num) = 1.d0
! endif
rc = trexio_write_basis_shell_factor(f(1), factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
rc = trexio_write_basis_shell_index(f(1), shell_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_exponent(f(1), prim_expo)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_coefficient(f(1), prim_coef)
call trexio_assert(rc, TREXIO_SUCCESS)
allocate(factor(prim_num))
if (primitives_normalized) then
factor(1:prim_num) = prim_normalization_factor(1:prim_num)
else
factor(1:prim_num) = 1.d0
endif
rc = trexio_write_basis_prim_factor(f(1), factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
! Atomic orbitals
! ---------------
print *, 'AOs'
rc = trexio_write_ao_num(f(1), ao_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_cartesian(f(1), 1)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_shell(f(1), ao_shell)
call trexio_assert(rc, TREXIO_SUCCESS)
integer :: i, pow0(3), powA(3), j, l, nz
double precision :: normA, norm0, C_A(3), overlap_x, overlap_z, overlap_y, c
nz=100
C_A(1) = 0.d0
C_A(2) = 0.d0
C_A(3) = 0.d0
allocate(factor(ao_num))
if (ao_normalized) then
do i=1,ao_num
l = ao_first_of_shell(ao_shell(i))
factor(i) = (ao_coef_normalized(i,1)+tiny(1.d0))/(ao_coef_normalized(l,1)+tiny(1.d0))
enddo
else
factor(:) = 1.d0
endif
rc = trexio_write_ao_normalization(f(1), factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
endif
! One-e AO integrals
! ------------------
if (export_ao_one_e_ints) then
print *, 'AO one-e integrals'
rc = trexio_write_ao_1e_int_overlap(f(1),ao_overlap)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_1e_int_kinetic(f(1),ao_kinetic_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_1e_int_potential_n_e(f(1),ao_integrals_n_e)
call trexio_assert(rc, TREXIO_SUCCESS)
if (do_pseudo) then
rc = trexio_write_ao_1e_int_ecp(f(1), ao_pseudo_integrals_local + ao_pseudo_integrals_non_local)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
rc = trexio_write_ao_1e_int_core_hamiltonian(f(1),ao_one_e_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
! Two-e AO integrals
! ------------------
if (export_ao_two_e_ints) then
print *, 'AO two-e integrals'
PROVIDE ao_two_e_integrals_in_map
integer(8), parameter :: BUFSIZE=100000_8
double precision :: eri_buffer(BUFSIZE), integral
integer(4) :: eri_index(4,BUFSIZE)
integer(8) :: icount, offset
double precision, external :: get_ao_two_e_integral
icount = 0_8
offset = 0_8
do l=1,ao_num
do k=1,ao_num
do j=l,ao_num
do i=k,ao_num
if (i==j .and. k<l) cycle
if (i<j) cycle
integral = get_ao_two_e_integral(i,j,k,l,ao_integrals_map)
if (integral == 0.d0) cycle
icount += 1_8
eri_buffer(icount) = integral
eri_index(1,icount) = i
eri_index(2,icount) = j
eri_index(3,icount) = k
eri_index(4,icount) = l
if (icount == BUFSIZE) then
rc = trexio_write_ao_2e_int_eri(f(1), offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
end do
if (icount >= 0_8) then
rc = trexio_write_ao_2e_int_eri(f(1), offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! Two-e AO integrals - Cholesky
! -----------------------------
integer(4) :: chol_index(3,BUFSIZE)
double precision :: chol_buffer(BUFSIZE)
if (export_ao_two_e_ints_cholesky) then
print *, 'AO two-e integrals Cholesky'
rc = trexio_write_ao_2e_int_eri_cholesky_num(f(1), cholesky_ao_num)
call trexio_assert(rc, TREXIO_SUCCESS)
icount = 0_8
offset = 0_8
do k=1,cholesky_ao_num
do j=1,ao_num
do i=1,ao_num
integral = cholesky_ao(i,j,k)
if (integral == 0.d0) cycle
icount += 1_8
chol_buffer(icount) = integral
chol_index(1,icount) = i
chol_index(2,icount) = j
chol_index(3,icount) = k
if (icount == BUFSIZE) then
rc = trexio_write_ao_2e_int_eri_cholesky(f(1), offset, icount, chol_index, chol_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
if (icount > 0_8) then
rc = trexio_write_ao_2e_int_eri_cholesky(f(1), offset, icount, chol_index, chol_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! Molecular orbitals
! ------------------
if (export_mos) then
print *, 'MOs'
rc = trexio_write_mo_type(f(1), mo_label, len(trim(mo_label)))
call trexio_assert(rc, TREXIO_SUCCESS)
do k=1,N_states
rc = trexio_write_mo_num(f(k), mo_num)
call trexio_assert(rc, TREXIO_SUCCESS)
enddo
rc = trexio_write_mo_coefficient(f(1), mo_coef)
call trexio_assert(rc, TREXIO_SUCCESS)
if ( (trim(mo_label) == 'Canonical').and. &
(export_mo_two_e_ints_cholesky.or.export_mo_two_e_ints) ) then
rc = trexio_write_mo_energy(f(1), fock_matrix_diag_mo)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
rc = trexio_write_mo_class(f(1), mo_class, len(mo_class(1)))
call trexio_assert(rc, TREXIO_SUCCESS)
endif
! One-e MO integrals
! ------------------
if (export_mo_one_e_ints) then
print *, 'MO one-e integrals'
rc = trexio_write_mo_1e_int_kinetic(f(1),mo_kinetic_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_mo_1e_int_potential_n_e(f(1),mo_integrals_n_e)
call trexio_assert(rc, TREXIO_SUCCESS)
if (do_pseudo) then
rc = trexio_write_mo_1e_int_ecp(f(1),mo_pseudo_integrals_local)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
rc = trexio_write_mo_1e_int_core_hamiltonian(f(1),mo_one_e_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
! Two-e MO integrals
! ------------------
if (export_mo_two_e_ints) then
print *, 'MO two-e integrals'
PROVIDE mo_two_e_integrals_in_map
double precision, external :: mo_two_e_integral
icount = 0_8
offset = 0_8
do l=1,mo_num
do k=1,mo_num
do j=l,mo_num
do i=k,mo_num
if (i==j .and. k<l) cycle
if (i<j) cycle
integral = mo_two_e_integral(i,j,k,l)
if (integral == 0.d0) cycle
icount += 1_8
eri_buffer(icount) = integral
eri_index(1,icount) = i
eri_index(2,icount) = j
eri_index(3,icount) = k
eri_index(4,icount) = l
if (icount == BUFSIZE) then
rc = trexio_write_mo_2e_int_eri(f(1), offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
end do
if (icount > 0_8) then
rc = trexio_write_mo_2e_int_eri(f(1), offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! Two-e MO integrals - Cholesky
! -----------------------------
if (export_mo_two_e_ints_cholesky) then
print *, 'MO two-e integrals Cholesky'
rc = trexio_write_mo_2e_int_eri_cholesky_num(f(1), cholesky_ao_num)
call trexio_assert(rc, TREXIO_SUCCESS)
icount = 0_8
offset = 0_8
do k=1,cholesky_ao_num
do j=1,mo_num
do i=1,mo_num
integral = cholesky_mo(i,j,k)
if (integral == 0.d0) cycle
icount += 1_8
chol_buffer(icount) = integral
chol_index(1,icount) = i
chol_index(2,icount) = j
chol_index(3,icount) = k
if (icount == BUFSIZE) then
rc = trexio_write_mo_2e_int_eri_cholesky(f(1), offset, icount, chol_index, chol_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
if (icount > 0_8) then
rc = trexio_write_mo_2e_int_eri_cholesky(f(1), offset, icount, chol_index, chol_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! One-e RDM
! ---------
do k=1,N_states
rc = trexio_write_rdm_1e(f(k),one_e_dm_mo_alpha(:,:,k) + one_e_dm_mo_beta(:,:,k))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_rdm_1e_up(f(k),one_e_dm_mo_alpha(:,:,k))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_rdm_1e_dn(f(k),one_e_dm_mo_beta(:,:,k))
call trexio_assert(rc, TREXIO_SUCCESS)
enddo
! Two-e RDM
! ---------
if (export_rdm) then
PROVIDE two_e_dm_mo
print *, 'Two-e RDM'
icount = 0_8
offset = 0_8
do l=1,mo_num
do k=1,mo_num
do j=1,mo_num
do i=1,mo_num
integral = two_e_dm_mo(i,j,k,l)
if (integral == 0.d0) cycle
icount += 1_8
eri_buffer(icount) = integral
eri_index(1,icount) = i
eri_index(2,icount) = j
eri_index(3,icount) = k
eri_index(4,icount) = l
if (icount == BUFSIZE) then
rc = trexio_write_rdm_2e(f(1), offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
end do
if (icount >= 0_8) then
rc = trexio_write_rdm_2e(f(1), offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! ------------------------------------------------------------------------------
! Determinants
! ------------
integer*8, allocatable :: det_buffer(:,:,:)
double precision, allocatable :: coef_buffer(:,:)
integer :: nint
rc = trexio_get_int64_num(f(1), nint)
call trexio_assert(rc, TREXIO_SUCCESS)
! nint = N_int
if (nint /= N_int) then
stop 'Problem with N_int'
endif
allocate ( det_buffer(nint, 2, BUFSIZE), coef_buffer(BUFSIZE, n_states) )
do k=1, N_states
icount = 0_8
offset = 0_8
rc = trexio_write_state_num(f(k), n_states)
call trexio_assert(rc, TREXIO_SUCCESS)
! Will need to be updated with TREXIO 2.4
! rc = trexio_write_state_id(f(k), k-1)
rc = trexio_write_state_id(f(k), k)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_state_file_name(f(k), filenames, len(filenames(1)))
call trexio_assert(rc, TREXIO_SUCCESS)
enddo
do k=1,n_det
icount += 1_8
det_buffer(1:nint, 1:2, icount) = psi_det(1:N_int, 1:2, k)
coef_buffer(icount,1:N_states) = psi_coef(k,1:N_states)
if (icount == BUFSIZE) then
do i=1,N_states
rc = trexio_write_determinant_list(f(i), offset, icount, det_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_determinant_coefficient(f(i), offset, icount, coef_buffer(1,i))
call trexio_assert(rc, TREXIO_SUCCESS)
end do
offset += icount
icount = 0_8
end if
end do
if (icount >= 0_8) then
do i=1,N_states
rc = trexio_write_determinant_list(f(i), offset, icount, det_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_determinant_coefficient(f(i), offset, icount, coef_buffer(1,i))
call trexio_assert(rc, TREXIO_SUCCESS)
end do
end if
deallocate ( det_buffer, coef_buffer )
do k=1,N_states
rc = trexio_close(f(k))
call trexio_assert(rc, TREXIO_SUCCESS)
enddo
end
! -*- mode: f90 -*-