mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-08 08:54:44 +02:00
139 lines
4.7 KiB
Fortran
139 lines
4.7 KiB
Fortran
BEGIN_PROVIDER [ double precision, pt2_match_weight, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Weights adjusted along the selection to make the PT2 contributions
|
|
! of each state coincide.
|
|
END_DOC
|
|
pt2_match_weight(:) = 1.d0
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, variance_match_weight, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Weights adjusted along the selection to make the variances
|
|
! of each state coincide.
|
|
END_DOC
|
|
variance_match_weight(:) = 1.d0
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
subroutine update_pt2_and_variance_weights(pt2_data, N_st)
|
|
implicit none
|
|
use selection_types
|
|
BEGIN_DOC
|
|
! Updates the PT2- and Variance- matching weights.
|
|
END_DOC
|
|
integer, intent(in) :: N_st
|
|
type(pt2_type), intent(in) :: pt2_data
|
|
double precision :: pt2(N_st)
|
|
double precision :: variance(N_st)
|
|
|
|
double precision :: avg, element, dt, x
|
|
integer :: k
|
|
pt2(:) = pt2_data % pt2(:)
|
|
variance(:) = pt2_data % variance(:)
|
|
|
|
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
|
|
|
dt = 4.d0 !* selection_factor
|
|
do k=1,N_st
|
|
element = pt2(k) !exp(dt*(pt2(k)/avg - 1.d0))
|
|
! element = min(2.0d0 , element)
|
|
! element = max(0.5d0 , element)
|
|
pt2_match_weight(k) *= element
|
|
enddo
|
|
|
|
|
|
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
|
|
|
do k=1,N_st
|
|
element = variance(k) ! exp(dt*(variance(k)/avg -1.d0))
|
|
! element = min(2.0d0 , element)
|
|
! element = max(0.5d0 , element)
|
|
variance_match_weight(k) *= element
|
|
enddo
|
|
|
|
if (N_det < 100) then
|
|
! For tiny wave functions, weights are 1.d0
|
|
pt2_match_weight(:) = 1.d0
|
|
variance_match_weight(:) = 1.d0
|
|
endif
|
|
|
|
pt2_match_weight(:) = pt2_match_weight(:)/sum(pt2_match_weight(:))
|
|
variance_match_weight(:) = variance_match_weight(:)/sum(variance_match_weight(:))
|
|
|
|
threshold_davidson_pt2 = min(1.d-6, &
|
|
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
|
|
|
|
SOFT_TOUCH pt2_match_weight variance_match_weight threshold_davidson_pt2
|
|
end
|
|
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Weights used in the selection criterion
|
|
END_DOC
|
|
select case (weight_selection)
|
|
|
|
case (0)
|
|
print *, 'Using input weights in selection'
|
|
selection_weight(1:N_states) = c0_weight(1:N_states) * state_average_weight(1:N_states)
|
|
|
|
case (1)
|
|
print *, 'Using 1/c_max^2 weight in selection'
|
|
selection_weight(1:N_states) = c0_weight(1:N_states)
|
|
|
|
case (2)
|
|
print *, 'Using PT2-matching weight in selection'
|
|
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
|
|
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
|
|
|
case (3)
|
|
print *, 'Using variance-matching weight in selection'
|
|
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
|
|
print *, '# var weight ', real(variance_match_weight(:),4)
|
|
|
|
case (4)
|
|
print *, 'Using variance- and PT2-matching weights in selection'
|
|
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states))
|
|
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
|
print *, '# var weight ', real(variance_match_weight(:),4)
|
|
|
|
case (5)
|
|
print *, 'Using variance-matching weight in selection'
|
|
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
|
|
print *, '# var weight ', real(variance_match_weight(:),4)
|
|
|
|
case (6)
|
|
print *, 'Using CI coefficient-based selection'
|
|
selection_weight(1:N_states) = c0_weight(1:N_states)
|
|
|
|
case (7)
|
|
print *, 'Input weights multiplied by variance- and PT2-matching'
|
|
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)) * state_average_weight(1:N_states)
|
|
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
|
print *, '# var weight ', real(variance_match_weight(:),4)
|
|
|
|
case (8)
|
|
print *, 'Input weights multiplied by pt2-matching'
|
|
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states) * state_average_weight(1:N_states)
|
|
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
|
|
|
case (9)
|
|
print *, 'Input weights multiplied by variance-matching'
|
|
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states) * state_average_weight(1:N_states)
|
|
print *, '# var weight ', real(variance_match_weight(:),4)
|
|
|
|
end select
|
|
selection_weight(:) = selection_weight(:)/sum(selection_weight(:))
|
|
print *, '# Total weight ', real(selection_weight(:),4)
|
|
|
|
END_PROVIDER
|
|
|