mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-21 11:03:29 +01:00
648 lines
21 KiB
Fortran
648 lines
21 KiB
Fortran
BEGIN_PROVIDER [ double precision, psi_energy, (N_states) ]
|
||
&BEGIN_PROVIDER [ double precision, psi_s2, (N_states) ]
|
||
implicit none
|
||
BEGIN_DOC
|
||
! psi_energy(i) = $\langle \Psi_i | H | \Psi_i \rangle$
|
||
!
|
||
! psi_s2(i) = $\langle \Psi_i | S^2 | \Psi_i \rangle$
|
||
END_DOC
|
||
call u_0_H_u_0(psi_energy,psi_s2,psi_coef,N_det,psi_det,N_int,N_states,psi_det_size)
|
||
integer :: i
|
||
do i=N_det+1,N_states
|
||
psi_energy(i) = 0.d0
|
||
psi_s2(i) = 0.d0
|
||
enddo
|
||
END_PROVIDER
|
||
|
||
BEGIN_PROVIDER [ double precision, psi_energy_with_nucl_rep, (N_states) ]
|
||
implicit none
|
||
BEGIN_DOC
|
||
! Energy of the wave function with the nuclear repulsion energy.
|
||
END_DOC
|
||
psi_energy_with_nucl_rep(1:N_states) = psi_energy(1:N_states) + nuclear_repulsion
|
||
END_PROVIDER
|
||
|
||
|
||
subroutine u_0_H_u_0(e_0,s_0,u_0,n,keys_tmp,Nint,N_st,sze)
|
||
use bitmasks
|
||
implicit none
|
||
BEGIN_DOC
|
||
! Computes $E_0 = \frac{\langle u_0 | H | u_0 \rangle}{\langle u_0 | u_0 \rangle}$
|
||
!
|
||
! and $S_0 = \frac{\langle u_0 | S^2 | u_0 \rangle}{\langle u_0 | u_0 \rangle}$
|
||
!
|
||
! n : number of determinants
|
||
!
|
||
END_DOC
|
||
integer, intent(in) :: n,Nint, N_st, sze
|
||
double precision, intent(out) :: e_0(N_st),s_0(N_st)
|
||
double precision, intent(inout) :: u_0(sze,N_st)
|
||
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
|
||
|
||
double precision, allocatable :: v_0(:,:), s_vec(:,:), u_1(:,:)
|
||
double precision :: u_dot_u,u_dot_v,diag_H_mat_elem
|
||
integer :: i,j, istate
|
||
|
||
if ((n > 100000).and.distributed_davidson) then
|
||
allocate (v_0(n,N_states_diag),s_vec(n,N_states_diag), u_1(n,N_states_diag))
|
||
u_1(:,:) = 0.d0
|
||
u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
|
||
call H_S2_u_0_nstates_zmq(v_0,s_vec,u_1,N_states_diag,n)
|
||
else if (n < n_det_max_full) then
|
||
allocate (v_0(n,N_st),s_vec(n,N_st), u_1(n,N_st))
|
||
v_0(:,:) = 0.d0
|
||
u_1(:,:) = 0.d0
|
||
s_vec(:,:) = 0.d0
|
||
u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
|
||
do istate = 1,N_st
|
||
do j=1,n
|
||
do i=1,n
|
||
v_0(i,istate) = v_0(i,istate) + h_matrix_all_dets(i,j) * u_0(j,istate)
|
||
s_vec(i,istate) = s_vec(i,istate) + S2_matrix_all_dets(i,j) * u_0(j,istate)
|
||
enddo
|
||
enddo
|
||
enddo
|
||
else
|
||
allocate (v_0(n,N_st),s_vec(n,N_st),u_1(n,N_st))
|
||
u_1(:,:) = 0.d0
|
||
u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
|
||
call H_S2_u_0_nstates_openmp(v_0,s_vec,u_1,N_st,n)
|
||
endif
|
||
u_0(1:n,1:N_st) = u_1(1:n,1:N_st)
|
||
deallocate(u_1)
|
||
double precision :: norm
|
||
!$OMP PARALLEL DO PRIVATE(i,norm) DEFAULT(SHARED)
|
||
do i=1,N_st
|
||
norm = u_dot_u(u_0(1,i),n)
|
||
if (norm /= 0.d0) then
|
||
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)
|
||
s_0(i) = u_dot_v(s_vec(1,i),u_0(1,i),n)
|
||
else
|
||
e_0(i) = 0.d0
|
||
s_0(i) = 0.d0
|
||
endif
|
||
enddo
|
||
!$OMP END PARALLEL DO
|
||
deallocate (s_vec, v_0)
|
||
end
|
||
|
||
|
||
|
||
|
||
|
||
subroutine H_S2_u_0_nstates_openmp(v_0,s_0,u_0,N_st,sze)
|
||
use bitmasks
|
||
implicit none
|
||
BEGIN_DOC
|
||
! Computes $v_0 = H | u_0\rangle$ and $s_0 = S^2 | u_0\rangle$.
|
||
!
|
||
! Assumes that the determinants are in psi_det
|
||
!
|
||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||
END_DOC
|
||
integer, intent(in) :: N_st,sze
|
||
double precision, intent(inout) :: v_0(sze,N_st), s_0(sze,N_st), u_0(sze,N_st)
|
||
integer :: k
|
||
double precision, allocatable :: u_t(:,:), v_t(:,:), s_t(:,:)
|
||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
||
allocate(u_t(N_st,N_det),v_t(N_st,N_det),s_t(N_st,N_det))
|
||
|
||
do k=1,N_st
|
||
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
||
enddo
|
||
v_t = 0.d0
|
||
s_t = 0.d0
|
||
call dtranspose( &
|
||
u_0, &
|
||
size(u_0, 1), &
|
||
u_t, &
|
||
size(u_t, 1), &
|
||
N_det, N_st)
|
||
|
||
call H_S2_u_0_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,1,N_det,0,1)
|
||
deallocate(u_t)
|
||
|
||
call dtranspose( &
|
||
v_t, &
|
||
size(v_t, 1), &
|
||
v_0, &
|
||
size(v_0, 1), &
|
||
N_st, N_det)
|
||
call dtranspose( &
|
||
s_t, &
|
||
size(s_t, 1), &
|
||
s_0, &
|
||
size(s_0, 1), &
|
||
N_st, N_det)
|
||
deallocate(v_t,s_t)
|
||
|
||
do k=1,N_st
|
||
call dset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||
call dset_order(s_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||
enddo
|
||
|
||
end
|
||
|
||
|
||
subroutine H_S2_u_0_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
use bitmasks
|
||
implicit none
|
||
BEGIN_DOC
|
||
! Computes $v_t = H | u_t\rangle$ and $s_t = S^2 | u_t\rangle$
|
||
!
|
||
! Default should be 1,N_det,0,1
|
||
END_DOC
|
||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||
double precision, intent(in) :: u_t(N_st,N_det)
|
||
double precision, intent(out) :: v_t(N_st,sze), s_t(N_st,sze)
|
||
|
||
|
||
PROVIDE ref_bitmask_energy N_int
|
||
|
||
select case (N_int)
|
||
case (1)
|
||
call H_S2_u_0_nstates_openmp_work_1(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
case (2)
|
||
call H_S2_u_0_nstates_openmp_work_2(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
case (3)
|
||
call H_S2_u_0_nstates_openmp_work_3(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
case (4)
|
||
call H_S2_u_0_nstates_openmp_work_4(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
case default
|
||
call H_S2_u_0_nstates_openmp_work_N_int(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
end select
|
||
end
|
||
BEGIN_TEMPLATE
|
||
|
||
subroutine H_S2_u_0_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
|
||
use bitmasks
|
||
implicit none
|
||
BEGIN_DOC
|
||
! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t\\rangle$
|
||
!
|
||
! Default should be 1,N_det,0,1
|
||
END_DOC
|
||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||
double precision, intent(in) :: u_t(N_st,N_det)
|
||
double precision, intent(out) :: v_t(N_st,sze), s_t(N_st,sze)
|
||
|
||
double precision :: hij, sij
|
||
integer :: i,j,k,l
|
||
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
||
integer :: istate
|
||
integer :: krow, kcol, krow_b, kcol_b
|
||
integer :: lrow, lcol
|
||
integer :: mrow, mcol
|
||
integer(bit_kind) :: spindet($N_int)
|
||
integer(bit_kind) :: tmp_det($N_int,2)
|
||
integer(bit_kind) :: tmp_det2($N_int,2)
|
||
integer(bit_kind) :: tmp_det3($N_int,2)
|
||
integer(bit_kind), allocatable :: buffer(:,:)
|
||
integer :: n_doubles
|
||
integer, allocatable :: doubles(:)
|
||
integer, allocatable :: singles_a(:)
|
||
integer, allocatable :: singles_b(:)
|
||
integer, allocatable :: idx(:), idx0(:)
|
||
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
|
||
integer*8 :: k8
|
||
logical :: compute_singles
|
||
integer*8 :: last_found, left, right, right_max
|
||
double precision :: rss, mem, ratio
|
||
|
||
! call resident_memory(rss)
|
||
! mem = dble(singles_beta_csc_size) / 1024.d0**3
|
||
!
|
||
! compute_singles = (mem+rss > qp_max_mem)
|
||
!
|
||
! if (.not.compute_singles) then
|
||
! provide singles_beta_csc
|
||
! endif
|
||
compute_singles=.True.
|
||
|
||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||
allocate(idx0(maxab))
|
||
|
||
do i=1,maxab
|
||
idx0(i) = i
|
||
enddo
|
||
|
||
! Prepare the array of all alpha single excitations
|
||
! -------------------------------------------------
|
||
|
||
PROVIDE N_int nthreads_davidson
|
||
!$OMP PARALLEL DEFAULT(SHARED) NUM_THREADS(nthreads_davidson) &
|
||
!$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
|
||
!$OMP psi_bilinear_matrix_columns, &
|
||
!$OMP psi_det_alpha_unique, psi_det_beta_unique, &
|
||
!$OMP n_det_alpha_unique, n_det_beta_unique, N_int, &
|
||
!$OMP psi_bilinear_matrix_transp_rows, &
|
||
!$OMP psi_bilinear_matrix_transp_columns, &
|
||
!$OMP psi_bilinear_matrix_transp_order, N_st, &
|
||
!$OMP psi_bilinear_matrix_order_transp_reverse, &
|
||
!$OMP psi_bilinear_matrix_columns_loc, &
|
||
!$OMP psi_bilinear_matrix_transp_rows_loc, &
|
||
!$OMP istart, iend, istep, irp_here, v_t, s_t, &
|
||
!$OMP ishift, idx0, u_t, maxab, compute_singles, &
|
||
!$OMP singles_alpha_csc,singles_alpha_csc_idx, &
|
||
!$OMP singles_beta_csc,singles_beta_csc_idx) &
|
||
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
|
||
!$OMP lcol, lrow, l_a, l_b, &
|
||
!$OMP buffer, doubles, n_doubles, &
|
||
!$OMP tmp_det2, hij, sij, idx, l, kcol_prev, &
|
||
!$OMP singles_a, n_singles_a, singles_b, ratio, &
|
||
!$OMP n_singles_b, k8, last_found,left,right,right_max)
|
||
|
||
! Alpha/Beta double excitations
|
||
! =============================
|
||
|
||
allocate( buffer($N_int,maxab), &
|
||
singles_a(maxab), &
|
||
singles_b(maxab), &
|
||
doubles(maxab), &
|
||
idx(maxab))
|
||
|
||
kcol_prev=-1
|
||
|
||
ASSERT (iend <= N_det)
|
||
ASSERT (istart > 0)
|
||
ASSERT (istep > 0)
|
||
|
||
!$OMP DO SCHEDULE(guided,64)
|
||
do k_a=istart+ishift,iend,istep
|
||
|
||
krow = psi_bilinear_matrix_rows(k_a)
|
||
ASSERT (krow <= N_det_alpha_unique)
|
||
|
||
kcol = psi_bilinear_matrix_columns(k_a)
|
||
ASSERT (kcol <= N_det_beta_unique)
|
||
|
||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||
|
||
if (kcol /= kcol_prev) then
|
||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||
if (compute_singles) then
|
||
call get_all_spin_singles_$N_int( &
|
||
psi_det_beta_unique, idx0, &
|
||
tmp_det(1,2), N_det_beta_unique, &
|
||
singles_b, n_singles_b)
|
||
else
|
||
n_singles_b = 0
|
||
!DIR$ LOOP COUNT avg(1000)
|
||
do k8=singles_beta_csc_idx(kcol),singles_beta_csc_idx(kcol+1)-1
|
||
n_singles_b = n_singles_b+1
|
||
singles_b(n_singles_b) = singles_beta_csc(k8)
|
||
enddo
|
||
endif
|
||
endif
|
||
kcol_prev = kcol
|
||
|
||
! Loop over singly excited beta columns
|
||
! -------------------------------------
|
||
|
||
!DIR$ LOOP COUNT avg(1000)
|
||
do i=1,n_singles_b
|
||
lcol = singles_b(i)
|
||
|
||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||
|
||
!---
|
||
! if (compute_singles) then
|
||
|
||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||
ASSERT (l_a <= N_det)
|
||
|
||
!DIR$ UNROLL(8)
|
||
!DIR$ LOOP COUNT avg(50000)
|
||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||
lrow = psi_bilinear_matrix_rows(l_a)
|
||
ASSERT (lrow <= N_det_alpha_unique)
|
||
|
||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ! hot spot
|
||
|
||
ASSERT (l_a <= N_det)
|
||
idx(j) = l_a
|
||
l_a = l_a+1
|
||
enddo
|
||
j = j-1
|
||
|
||
call get_all_spin_singles_$N_int( &
|
||
buffer, idx, tmp_det(1,1), j, &
|
||
singles_a, n_singles_a )
|
||
|
||
!-----
|
||
! else
|
||
!
|
||
! ! Search for singles
|
||
!
|
||
!call cpu_time(time0)
|
||
! ! Right boundary
|
||
! l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1
|
||
! ASSERT (l_a <= N_det)
|
||
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||
! lrow = psi_bilinear_matrix_rows(l_a)
|
||
! ASSERT (lrow <= N_det_alpha_unique)
|
||
!
|
||
! left = singles_alpha_csc_idx(krow)
|
||
! right_max = -1_8
|
||
! right = singles_alpha_csc_idx(krow+1)
|
||
! do while (right-left>0_8)
|
||
! k8 = shiftr(right+left,1)
|
||
! if (singles_alpha_csc(k8) > lrow) then
|
||
! right = k8
|
||
! else if (singles_alpha_csc(k8) < lrow) then
|
||
! left = k8 + 1_8
|
||
! else
|
||
! right_max = k8+1_8
|
||
! exit
|
||
! endif
|
||
! enddo
|
||
! if (right_max > 0_8) exit
|
||
! l_a = l_a-1
|
||
! enddo
|
||
! if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow)
|
||
!
|
||
! ! Search
|
||
! n_singles_a = 0
|
||
! l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||
! ASSERT (l_a <= N_det)
|
||
!
|
||
! last_found = singles_alpha_csc_idx(krow)
|
||
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||
! lrow = psi_bilinear_matrix_rows(l_a)
|
||
! ASSERT (lrow <= N_det_alpha_unique)
|
||
!
|
||
! left = last_found
|
||
! right = right_max
|
||
! do while (right-left>0_8)
|
||
! k8 = shiftr(right+left,1)
|
||
! if (singles_alpha_csc(k8) > lrow) then
|
||
! right = k8
|
||
! else if (singles_alpha_csc(k8) < lrow) then
|
||
! left = k8 + 1_8
|
||
! else
|
||
! n_singles_a += 1
|
||
! singles_a(n_singles_a) = l_a
|
||
! last_found = k8+1_8
|
||
! exit
|
||
! endif
|
||
! enddo
|
||
! l_a = l_a+1
|
||
! enddo
|
||
! j = j-1
|
||
!
|
||
! endif
|
||
!-----
|
||
|
||
! Loop over alpha singles
|
||
! -----------------------
|
||
|
||
!DIR$ LOOP COUNT avg(1000)
|
||
do k = 1,n_singles_a
|
||
l_a = singles_a(k)
|
||
ASSERT (l_a <= N_det)
|
||
|
||
lrow = psi_bilinear_matrix_rows(l_a)
|
||
ASSERT (lrow <= N_det_alpha_unique)
|
||
|
||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij)
|
||
call get_s2(tmp_det,tmp_det2,$N_int,sij)
|
||
!DIR$ LOOP COUNT AVG(4)
|
||
do l=1,N_st
|
||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,l_a)
|
||
enddo
|
||
enddo
|
||
|
||
enddo
|
||
|
||
enddo
|
||
!$OMP END DO
|
||
|
||
!$OMP DO SCHEDULE(guided,64)
|
||
do k_a=istart+ishift,iend,istep
|
||
|
||
|
||
! Single and double alpha excitations
|
||
! ===================================
|
||
|
||
|
||
! Initial determinant is at k_a in alpha-major representation
|
||
! -----------------------------------------------------------------------
|
||
|
||
krow = psi_bilinear_matrix_rows(k_a)
|
||
ASSERT (krow <= N_det_alpha_unique)
|
||
|
||
kcol = psi_bilinear_matrix_columns(k_a)
|
||
ASSERT (kcol <= N_det_beta_unique)
|
||
|
||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||
|
||
! Initial determinant is at k_b in beta-major representation
|
||
! ----------------------------------------------------------------------
|
||
|
||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||
ASSERT (k_b <= N_det)
|
||
|
||
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
||
|
||
! Loop inside the beta column to gather all the connected alphas
|
||
lcol = psi_bilinear_matrix_columns(k_a)
|
||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||
|
||
!DIR$ LOOP COUNT avg(200000)
|
||
do i=1,N_det_alpha_unique
|
||
if (l_a > N_det) exit
|
||
lcol = psi_bilinear_matrix_columns(l_a)
|
||
if (lcol /= kcol) exit
|
||
lrow = psi_bilinear_matrix_rows(l_a)
|
||
ASSERT (lrow <= N_det_alpha_unique)
|
||
|
||
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) ! Hot spot
|
||
idx(i) = l_a
|
||
l_a = l_a+1
|
||
enddo
|
||
i = i-1
|
||
|
||
call get_all_spin_singles_and_doubles_$N_int( &
|
||
buffer, idx, spindet, i, &
|
||
singles_a, doubles, n_singles_a, n_doubles )
|
||
|
||
! Compute Hij for all alpha singles
|
||
! ----------------------------------
|
||
|
||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||
!DIR$ LOOP COUNT avg(1000)
|
||
do i=1,n_singles_a
|
||
l_a = singles_a(i)
|
||
ASSERT (l_a <= N_det)
|
||
|
||
lrow = psi_bilinear_matrix_rows(l_a)
|
||
ASSERT (lrow <= N_det_alpha_unique)
|
||
|
||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||
call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 1, hij)
|
||
|
||
!DIR$ LOOP COUNT AVG(4)
|
||
do l=1,N_st
|
||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||
! single => sij = 0
|
||
enddo
|
||
enddo
|
||
|
||
|
||
! Compute Hij for all alpha doubles
|
||
! ----------------------------------
|
||
|
||
!DIR$ LOOP COUNT avg(50000)
|
||
do i=1,n_doubles
|
||
l_a = doubles(i)
|
||
ASSERT (l_a <= N_det)
|
||
|
||
lrow = psi_bilinear_matrix_rows(l_a)
|
||
ASSERT (lrow <= N_det_alpha_unique)
|
||
|
||
call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
|
||
!DIR$ LOOP COUNT AVG(4)
|
||
do l=1,N_st
|
||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||
! same spin => sij = 0
|
||
enddo
|
||
enddo
|
||
|
||
|
||
! Single and double beta excitations
|
||
! ==================================
|
||
|
||
|
||
! Initial determinant is at k_a in alpha-major representation
|
||
! -----------------------------------------------------------------------
|
||
|
||
krow = psi_bilinear_matrix_rows(k_a)
|
||
kcol = psi_bilinear_matrix_columns(k_a)
|
||
|
||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||
|
||
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
||
|
||
! Initial determinant is at k_b in beta-major representation
|
||
! -----------------------------------------------------------------------
|
||
|
||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||
ASSERT (k_b <= N_det)
|
||
|
||
! Loop inside the alpha row to gather all the connected betas
|
||
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
||
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
||
!DIR$ LOOP COUNT avg(200000)
|
||
do i=1,N_det_beta_unique
|
||
if (l_b > N_det) exit
|
||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||
if (lrow /= krow) exit
|
||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||
ASSERT (lcol <= N_det_beta_unique)
|
||
|
||
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
||
idx(i) = l_b
|
||
l_b = l_b+1
|
||
enddo
|
||
i = i-1
|
||
|
||
call get_all_spin_singles_and_doubles_$N_int( &
|
||
buffer, idx, spindet, i, &
|
||
singles_b, doubles, n_singles_b, n_doubles )
|
||
|
||
! Compute Hij for all beta singles
|
||
! ----------------------------------
|
||
|
||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||
!DIR$ LOOP COUNT avg(1000)
|
||
do i=1,n_singles_b
|
||
l_b = singles_b(i)
|
||
ASSERT (l_b <= N_det)
|
||
|
||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||
ASSERT (lcol <= N_det_beta_unique)
|
||
|
||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
||
call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 2, hij)
|
||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||
ASSERT (l_a <= N_det)
|
||
!DIR$ LOOP COUNT AVG(4)
|
||
do l=1,N_st
|
||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||
! single => sij = 0
|
||
enddo
|
||
enddo
|
||
|
||
! Compute Hij for all beta doubles
|
||
! ----------------------------------
|
||
|
||
!DIR$ LOOP COUNT avg(50000)
|
||
do i=1,n_doubles
|
||
l_b = doubles(i)
|
||
ASSERT (l_b <= N_det)
|
||
|
||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||
ASSERT (lcol <= N_det_beta_unique)
|
||
|
||
call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
|
||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||
ASSERT (l_a <= N_det)
|
||
|
||
!DIR$ LOOP COUNT AVG(4)
|
||
do l=1,N_st
|
||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||
! same spin => sij = 0
|
||
enddo
|
||
enddo
|
||
|
||
|
||
! Diagonal contribution
|
||
! =====================
|
||
|
||
|
||
! Initial determinant is at k_a in alpha-major representation
|
||
! -----------------------------------------------------------------------
|
||
|
||
krow = psi_bilinear_matrix_rows(k_a)
|
||
ASSERT (krow <= N_det_alpha_unique)
|
||
|
||
kcol = psi_bilinear_matrix_columns(k_a)
|
||
ASSERT (kcol <= N_det_beta_unique)
|
||
|
||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||
|
||
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
|
||
|
||
hij = diag_H_mat_elem(tmp_det,$N_int)
|
||
sij = diag_S_mat_elem(tmp_det,$N_int)
|
||
!DIR$ LOOP COUNT AVG(4)
|
||
do l=1,N_st
|
||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
|
||
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a)
|
||
enddo
|
||
|
||
end do
|
||
!$OMP END DO
|
||
deallocate(buffer, singles_a, singles_b, doubles, idx)
|
||
!$OMP END PARALLEL
|
||
|
||
end
|
||
|
||
SUBST [ N_int ]
|
||
|
||
1;;
|
||
2;;
|
||
3;;
|
||
4;;
|
||
N_int;;
|
||
|
||
END_TEMPLATE
|
||
|
||
|