9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-14 13:46:21 +01:00
qp2/src/utils_complex/qp2-pbc-diff.txt
2020-02-19 12:47:22 -06:00

432 lines
15 KiB
Plaintext

-------------------------------------------------------------------------------------
current:
determinants:
TODO
create_excitations
do_single_excitation
use symmetry rules to simplify?
should this be general, or should we only allow singles that conserve momentum?
density_matrix
...
DONE
create_excitations
build_singly_excited_wavefunction{_complex}
-------------------------------------------------------------------------------------
for complex data, add extra dim (size 2) and treat as real in EZFIO.cfg
no reuse of old provider for real part of complex arrays
mo_coef_complex_kpts has nonzero blocks of mo_coef_complex
AO 2e ints:
see doc for map index details
see src/hartree_fock/fock_matrix_hf_complex.irp.f for example of iterating over values in map
MO 2e ints:
similar to AO 2e ints
maybe good idea to make map_get for two neighboring vals? (re/im parts)
only built from 3idx (not from 4idx transform)
mapping:
changed so that all real ints (Jij, Kij, Jii) are in map2
<ij|ij>, <ij|ji>, <ii|ii>
some places in code assume that map1 ints can be real
(can remove once we are sure we like this mapping)
translational symmetry:
kconserv array gives quartets <ij|kl> which are symmetry-allowed
k_i + k_j = k_k + k_l
I + J = K + L
kconserv(I,J,K)=L
------------------------------------------------------------------------------
TODO:
symmetry
restructure arrays?
mo coef and mo 1e ints already separate from real part of code (easy to add extra dimension)
ao 1e ints could also be handled in same way as mo 1e ints
change to allow different numbers of frozen/virtual mos for different kpts
for now, all kpts must have same number of aos/mos
bitmasks for kpts?
ao_one_e_ints
ao_overlap_abs for complex? <abs(i)|abs(j)> vs abs(<i|j>)
ao_integrals_n_e_per_atom_complex (should be simple, but currently we only use dummy nuclei)
ao_two_e_ints (todo)
get_ao_two_e_integrals_non_zero_complex
get_ao_two_e_integrals_non_zero_jl_complex
get_ao_two_e_integrals_non_zero_jl_from_list_complex
mo_two_e_ints (todo)
get_mo_two_e_integrals_ij_complex
add_integrals_to_map_complex
add_integrals_to_map_three_indices_complex
add_integrals_to_map_no_exit_34_complex
later:
calculation of pbc integrals in QP
ao_two_e_integral
ao_two_e_integral_schwartz_accel
compute_ao_two_e_integrals
[ double precision, ao_two_e_integral_schwartz,(ao_num,ao_num) ]
compute_ao_integrals_jl
...
NOTES:
2e integrals printed from pyscf are in physicists' notation
mo energies from pyscf include ewald correction; in qp we just fold that into the nuclear repulsion
this may need to change for addition/removal of electrons
(shift in enuc depends on number of electrons)
3-index integrals
<ij|kl> = \sum_\mu (ik|\mu)(jl|\mu)
store (ik|\mu) for I<=K
if i>k, take conjugate transpose in first two dimensions
df_mo(:,:,mu,kjkl) = C(:,:,kj)^\dagger.df_ao(:,:,mu,kjkl).C(:,:,kl)
(note: might need to switch j/l depending on how we decide to store this)
2e int compound indexing
number of unique 4-tuples with 8-fold symmetry is a8(n)=n*(n+1)*(n^2+n+2)/8
number of unique 4-tuples with 4-fold symmetry is a4(n)=n^2*(n^2+3)/4
a8 is number of unique real 2e ints with n mos
a4 is number of unique* complex 2e ints with n mos (where p+i*q and p-i*q are counted as one, not two)
a4(n) = a8(n) + a8(n-1)
we can already generate the list of <ij|kl> with unique values for the 8-fold case
the set of these for 4-fold symmetry is the union of the 8-fold set for n and the 8-fold set for n-1 with a simple transformation
<ij|kl>_{4,n} = <ij|kl>_{8,n} + <(k+1)j|i(l+1)>_{8,n-1}
############################
# utils, ezfio, ... #
############################
ocaml/Input_mo_basis.ml
added mo_coef_imag array (real)
still needs mo_coef_to_string and to_string?
src/nuclei/EZFIO.cfg
[is_complex]
if true use periodic parts of code
src/utils/linear_algebra.irp.f
complex versions of utils
(maybe put in separate file?)
src/utils/map_module.f90
subroutine map_get_2
get two neighboring values from map
not tested or used
src/utils_periodic/export_integrals_ao_periodic.irp.f
dump ints for testing
src/utils_periodic/import_integrals_ao_periodic.irp.f
read ints from pyscf
TODO: don't read ao_num from stdin
src/utils_periodic/import_mo_coef_complex.irp.f
read mo_coef from pyscf
#######################
# ao_one_e_ints #
#######################
src/ao_one_e_ints/EZFIO.cfg
[ao_integrals_n_e_imag]
[ao_integrals_kinetic_imag]
[ao_integrals_pseudo_imag]
[ao_integrals_overlap_imag]
[ao_one_e_integrals_imag]
src/ao_one_e_ints/ao_one_e_ints.irp.f
ao_one_e_integrals_imag
can only be read (not calculated)
ao_one_e_integrals_complex
formed from dcmplx(ao_one_e_integrals,ao_one_e_integrals_imag)
src/ao_one_e_ints/ao_overlap.irp.f
src/ao_one_e_ints/kin_ao_ints.irp.f
src/ao_one_e_ints/pot_ao_ints.irp.f
src/ao_one_e_ints/pot_ao_pseudo_ints.irp.f
added _imag and _complex versions of all AO 1-e ints
each complex array is formed by combining real and imag arrays
imag arrays can only be read from disk
no complex/imag versions of ao_integrals_n_e_per_atom, but this should be straightforward if we need it later?
changed ao_overlap_abs so that it is set to cdabs(ao_overlap_complex) if (is_complex)
TODO: (maybe not the behavior we want)
added S_inv_complex
TODO: (no S_half_inv_complex yet)
src/ao_one_e_ints/ao_ortho_canonical_complex.irp.f
ao_cart_to_sphe_coef_complex
just a copy of ao_cart_to_sphe_coef_complex with complex type for easier zgemm
(with different size if ao_cart_to_sphe_num is less than ao_num)
depends on ao_cart_to_sphe_coef_complex
ao_cart_to_sphe_overlap_complex
similar to real version, but uses ao_overlap_complex instead of ao_overlap
ao_ortho_canonical_coef_inv_complex
self-explanatory
ao_ortho_canonical_coef_complex
ao_ortho_canonical_num_complex
similar to real version
providers are linked, so easier to just make num_complex instead of using original num (even though they will both have the same value)
need to make sure this doesn't require any other downstream changes (i.e. replace ao_ortho_canonical_num with complex version if (is_complex))
ao_ortho_canonical_overlap_complex
similar to real version
#######################
# ao_two_e_ints #
#######################
src/ao_two_e_ints/map_integrals.irp.f
added ao_integrals_map_2 (provider linked to ao_integrals_map)
double size of both maps if (is_complex)
subroutine two_e_integrals_index_complex
same as real version, but return compound (2) indices to avoid recomputing
ao_integrals_cache_complex
similar to real version
subroutine ao_two_e_integral_complex_map_idx_sign
from i,j,k,l, return which map to use (T->1, F->2), location of real part of integral, sign of imaginary part of integral
complex*16 function get_ao_two_e_integral_complex_simple
args i,j,k,l,map1,map2
return complex integral composed of correct elements from one of the maps
complex*16 function get_ao_two_e_integral_complex
same behavior as _simple version, but checks cache first
returns integral from cache if possible, otherwise retrieves from map
subroutine get_ao_two_e_integrals_complex
same functionality as real version
subroutine insert_into_ao_integrals_map_2
needed for second map
get_ao_map_size, clear_ao_map
no new functions, but now these also handle map2
not implemented for periodic:
subroutine get_ao_two_e_integrals_non_zero
subroutine get_ao_two_e_integrals_non_zero_jl
subroutine get_ao_two_e_integrals_non_zero_jl_from_list
src/ao_two_e_ints/two_e_integrals.irp.f
not implemented for periodic:
double precision function ao_two_e_integral
double precision function ao_two_e_integral_schwartz_accel
subroutine compute_ao_two_e_integrals
[ double precision, ao_two_e_integral_schwartz,(ao_num,ao_num) ]
subroutine compute_ao_integrals_jl
(and other integral calculation functions)
modified for periodic:
[ logical, ao_two_e_integrals_in_map ]
complex AO ints can only be read from disk (not calculated)
#######################
# mo_basis #
#######################
src/mo_basis/track_orb.irp.f → src/bitmask/track_orb.irp.f
not implemented for periodic:
subroutine reorder_core_orb (should be modified for periodic)
modified for periodic:
subroutine initialize_mo_coef_begin_iteration
added for periodic:
[ complex*16, mo_coef_begin_iteration_complex, (ao_num,mo_num) ]
similar to real version
src/mo_basis/EZFIO.cfg
[mo_coef_imag]
src/mo_basis/mos.irp.f
modified for periodic:
subroutine mix_mo_jk
src/mo_basis/mos_complex.irp.f
added for periodic:
[ double precision, mo_coef_imag, (ao_num,mo_num) ]
[ complex*16, mo_coef_complex, (ao_num,mo_num) ]
[ complex*16, mo_coef_in_ao_ortho_basis_complex, (ao_num, mo_num) ]
[ complex*16, mo_coef_transp_complex, (mo_num,ao_num) ]
[ complex*16, mo_coef_transp_complex_conjg, (mo_num,ao_num) ]
maybe not necessary?
might cause confusion having both of these?
maybe should add _noconjg to name of _transp so it's clear that it's just the transpose, and not the adjoint
subroutine ao_to_mo_complex
subroutine ao_ortho_cano_to_ao_complex
src/mo_basis/utils.irp.f
not modified:
subroutine save_mos_no_occ (should be changed for periodic)
subroutine save_mos_truncated(n)
subroutine save_mos
modified to write mo_coef_imag to disk
need to make sure this is handled correctly
either update mo_coef{,_imag} whenever mo_coef_complex changes, or just make sure they're updated before writing to disk
(or just put real/imag parts of mo_coef_complex into buffer to save and avoid directly working with mo_coef{,_imag})
src/mo_basis/utils_periodic.irp.f
complex versions of functions from utils
mo_as_eigvectors_of_mo_matrix_complex
mo_as_svd_vectors_of_mo_matrix_complex
mo_as_svd_vectors_of_mo_matrix_eig_complex
these three subroutines modify mo_coef_complex, decide whether to update mo_coef{,_imag} here or elsewhere
mo_coef_new_as_svd_vectors_of_mo_matrix_eig_complex
src/mo_guess/h_core_guess_routine.irp.f
subroutine hcore_guess
modified for periodic, but need to decide how to handle separate parts of mo_coef_complex when updated
(also has soft_touch mo_coef_complex)
src/mo_guess/mo_ortho_lowdin_complex.irp.f
[complex*16, ao_ortho_lowdin_coef_complex, (ao_num,ao_num)]
[complex*16, ao_ortho_lowdin_overlap_complex, (ao_num,ao_num)]
src/mo_guess/pot_mo_ortho_canonical_ints.irp.f
[complex*16, ao_ortho_canonical_nucl_elec_integrals_complex, (mo_num,mo_num)]
src/mo_guess/pot_mo_ortho_lowdin_ints.irp.f
[complex*16, ao_ortho_lowdin_nucl_elec_integrals_complex, (mo_num,mo_num)]
#######################
# mo_one_e_ints #
#######################
src/mo_one_e_ints/EZFIO.cfg
[mo_integrals_e_n_imag]
[mo_integrals_kinetic_imag]
[mo_integrals_pseudo_imag]
[mo_integrals_pseudo_imag]
src/mo_one_e_ints/ao_to_mo_complex.irp.f
mo_to_ao_complex
mo_to_ao_no_overlap_complex
[ complex*16, S_mo_coef_complex, (ao_num, mo_num) ]
src/mo_one_e_ints/orthonormalize.irp.f
subroutine orthonormalize_mos
same issue as above with modification of mo_coef_complex
src/mo_one_e_ints/mo_one_e_ints.irp.f
src/mo_one_e_ints/kin_mo_ints.irp.f
src/mo_one_e_ints/mo_overlap.irp.f
src/mo_one_e_ints/pot_mo_ints.irp.f
src/mo_one_e_ints/pot_mo_pseudo_ints.irp.f
TODO: decide how to handle these providers
for periodic AOs, we always read (can't compute)
for MOs, we can either read from disk or transform from AOs
simplest way might be to link all three providers (integrals{,_imag,_complex})
if (.not.is_complex), just ignore imag and complex arrays?
if (is_complex)
either read real/imag from disk and combine to form complex
or transform complex MO ints from complex AO ints and also assign real/imag parts to separate arrays?
src/mo_one_e_ints/mo_overlap.irp.f
[ complex*16, mo_overlap_complex,(mo_num,mo_num) ]
TODO: add option to read from disk?
typical workflow from pyscf might include reading MO 1,2-e ints, ovlp, mo_coef
maybe just add check to converter to ensure they're orthonormal, and don't save them after that?
#######################
# SCF #
#######################
src/hartree_fock/fock_matrix_hf_complex.irp.f
TODO for periodic:
[ complex*16, ao_two_e_integral_{alpha,beta}_complex, (ao_num, ao_num) ]
finish implementation (might need new version of two_e_integrals_index_reverse)
added for periodic:
[ complex*16, Fock_matrix_ao_{alpha,beta}_complex, (ao_num, ao_num) ]
src/hartree_fock/scf.irp.f
modified for periodic:
subroutine create_guess
should work for periodic
TODO: decide what to do about mo_coef_complex and imag/real parts for touch/save!!!
TODO: call roothaan_hall_scf_complex if (is_complex)
src/scf_utils/diagonalize_fock_complex.irp.f
[ complex*16, eigenvectors_Fock_matrix_mo_complex, (ao_num,mo_num) ]
similar to real version
make separate function in utils for lapack calls
src/scf_utils/diis_complex.irp.f
[complex*16, FPS_SPF_Matrix_AO_complex, (AO_num, AO_num)]
[complex*16, FPS_SPF_Matrix_MO, (mo_num, mo_num)]
linked providers:
[ double precision, eigenvalues_Fock_matrix_AO_complex, (AO_num) ]
[ complex*16, eigenvectors_Fock_matrix_AO_complex, (AO_num,AO_num) ]
TODO: finish implementing (need s_half_inv_complex)
note: eigvals is same type/size as real version
src/scf_utils/fock_matrix.irp.f
added checks to make sure we don't end up in real providers if (is_complex)
probably not necessary?
[ double precision, SCF_energy ]
modified for periodic
could also add check to ensure imaginary part is zero?
src/scf_utils/fock_matrix_complex.irp.f
[ complex*16, Fock_matrix_mo_complex, (mo_num,mo_num) ]
[ double precision, Fock_matrix_diag_mo_complex, (mo_num)]
similar to real versions
added check to make sure diagonal elements of fock matrix are real
[ complex*16, Fock_matrix_mo_alpha_complex, (mo_num,mo_num) ]
[ complex*16, Fock_matrix_mo_beta_complex, (mo_num,mo_num) ]
[ complex*16, Fock_matrix_ao_complex, (ao_num, ao_num) ]
src/scf_utils/huckel_complex.irp.f
similar to real version
could just put if (is_complex) branch in real version? (instead of making separate subroutine)
has soft_touch mo_coef_complex and call to save_mos (see other notes on real/imag parts)
src/scf_utils/roothaan_hall_scf_complex.irp.f
subroutine Roothaan_Hall_SCF_complex
similar to real
has soft_touch mo_coef_complex and call to save_mos (see other notes on real/imag parts)
src/scf_utils/scf_density_matrix_ao_complex.irp.f
complex versions of providers
[complex*16, SCF_density_matrix_ao_alpha_complex, (ao_num,ao_num) ]
[ complex*16, SCF_density_matrix_ao_beta_complex, (ao_num,ao_num) ]
[ complex*16, SCF_density_matrix_ao_complex, (ao_num,ao_num) ]