mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-09 13:13:29 +01:00
1.5 KiB
1.5 KiB
Vector to matrix indexes
Compute the indexes p,q of a matrix element with the vector index i
Vector (i) -> lower diagonal matrix (p,q), p > q
If a matrix is antisymmetric it can be reshaped as a vector. And the vector can be reshaped as an antisymmetric matrix
\begin{align*} \begin{pmatrix} 0 & -1 & -2 & -4 \\ 1 & 0 & -3 & -5 \\ 2 & 3 & 0 & -6 \\ 4 & 5 & 6 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \end{align*}!!! Here the algorithm only work for the lower diagonal !!!
Input:
i | integer | index in the vector |
Ouput:
p,q | integer | corresponding indexes in the lower diagonal of a matrix |
p > q, | ||
p -> row, | ||
q -> column |
subroutine vec_to_mat_index(i,p,q)
include 'pi.h'
!BEGIN_DOC
! Compute the indexes (p,q) of the element in the lower diagonal matrix knowing
! its index i a vector
!END_DOC
implicit none
! Variables
! in
integer,intent(in) :: i
! out
integer, intent(out) :: p,q
! internal
integer :: a,b
double precision :: da
da = 0.5d0*(1+ sqrt(1d0+8d0*DBLE(i)))
a = INT(da)
if ((a*(a-1))/2==i) then
p = a-1
else
p = a
endif
b = p*(p-1)/2
! Matrix element indexes
p = p + 1
q = i - b
end subroutine