mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-02 19:53:36 +01:00
249 lines
8.5 KiB
Fortran
249 lines
8.5 KiB
Fortran
! Algorithm for the trust region
|
|
|
|
! step_in_trust_region:
|
|
! Computes the step in the trust region (delta)
|
|
! (automatically sets at the iteration 0 and which evolves during the
|
|
! process in function of the evolution of rho). The step is computing by
|
|
! constraining its norm with a lagrange multiplier.
|
|
! Since the calculation of the step is based on the Newton method, an
|
|
! estimation of the gain in energy is given using the Taylors series
|
|
! truncated at the second order (criterion_model).
|
|
! If (DABS(criterion-criterion_model) < 1d-12) then
|
|
! must_exit = .True.
|
|
! else
|
|
! must_exit = .False.
|
|
|
|
! This estimation of the gain in energy is used by
|
|
! is_step_cancel_trust_region to say if the step is accepted or cancelled.
|
|
|
|
! If the step must be cancelled, the calculation restart from the same
|
|
! hessian and gradient and recomputes the step but in a smaller trust
|
|
! region and so on until the step is accepted. If the step is accepted
|
|
! the hessian and the gradient are recomputed to produce a new step.
|
|
|
|
! Example:
|
|
|
|
|
|
! !### Initialization ###
|
|
! delta = 0d0
|
|
! nb_iter = 0 ! Must start at 0 !!!
|
|
! rho = 0.5d0
|
|
! not_converged = .True.
|
|
!
|
|
! ! ### TODO ###
|
|
! ! Compute the criterion before the loop
|
|
! call #your_criterion(prev_criterion)
|
|
!
|
|
! do while (not_converged)
|
|
! ! ### TODO ##
|
|
! ! Call your gradient
|
|
! ! Call you hessian
|
|
! call #your_gradient(v_grad) (1D array)
|
|
! call #your_hessian(H) (2D array)
|
|
!
|
|
! ! ### TODO ###
|
|
! ! Diagonalization of the hessian
|
|
! call diagonalization_hessian(n,H,e_val,w)
|
|
!
|
|
! cancel_step = .True. ! To enter in the loop just after
|
|
! ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
|
! do while (cancel_step)
|
|
!
|
|
! ! Hessian,gradient,Criterion -> x
|
|
! call trust_region_step_w_expected_e(tmp_n,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
|
|
!
|
|
! if (must_exit) then
|
|
! ! ### Message ###
|
|
! ! if step_in_trust_region sets must_exit on true for numerical reasons
|
|
! print*,'algo_trust1 sends the message : Exit'
|
|
! !### exit ###
|
|
! endif
|
|
!
|
|
! !### TODO ###
|
|
! ! Compute x -> m_x
|
|
! ! Compute m_x -> R
|
|
! ! Apply R and keep the previous MOs...
|
|
! ! Update/touch
|
|
! ! Compute the new criterion/energy -> criterion
|
|
!
|
|
! call #your_routine_1D_to_2D_antisymmetric_array(x,m_x)
|
|
! call #your_routine_2D_antisymmetric_array_to_rotation_matrix(m_x,R)
|
|
! call #your_routine_to_apply_the_rotation_matrix(R,prev_mos)
|
|
!
|
|
! TOUCH #your_variables
|
|
!
|
|
! call #your_criterion(criterion)
|
|
!
|
|
! ! Criterion -> step accepted or rejected
|
|
! call trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
|
|
!
|
|
! !### TODO ###
|
|
! !if (cancel_step) then
|
|
! ! Cancel the previous step (mo_coef = prev_mos if you keep them...)
|
|
! !endif
|
|
! #if (cancel_step) then
|
|
! #mo_coef = prev_mos
|
|
! #endif
|
|
!
|
|
! enddo
|
|
!
|
|
! !call save_mos() !### depend of the time for 1 iteration
|
|
!
|
|
! ! To exit the external loop if must_exit = .True.
|
|
! if (must_exit) then
|
|
! !### exit ###
|
|
! endif
|
|
!
|
|
! ! Step accepted, nb iteration + 1
|
|
! nb_iter = nb_iter + 1
|
|
!
|
|
! ! ### TODO ###
|
|
! !if (###Conditions###) then
|
|
! ! no_converged = .False.
|
|
! !endif
|
|
! #if (#your_conditions) then
|
|
! # not_converged = .False.
|
|
! #endif
|
|
!
|
|
! enddo
|
|
|
|
|
|
|
|
! Variables:
|
|
|
|
! Input:
|
|
! | n | integer | m*(m-1)/2 |
|
|
! | m | integer | number of mo in the mo_class |
|
|
! | H(n,n) | double precision | Hessian |
|
|
! | v_grad(n) | double precision | Gradient |
|
|
! | W(n,n) | double precision | Eigenvectors of the hessian |
|
|
! | e_val(n) | double precision | Eigenvalues of the hessian |
|
|
! | criterion | double precision | Actual criterion |
|
|
! | prev_criterion | double precision | Value of the criterion before the first iteration/after the previous iteration |
|
|
! | rho | double precision | Given by is_step_cancel_trus_region |
|
|
! | | | Agreement between the real function and the Taylor series (2nd order) |
|
|
! | nb_iter | integer | Actual number of iterations |
|
|
|
|
! Input/output:
|
|
! | delta | double precision | Radius of the trust region |
|
|
|
|
! Output:
|
|
! | criterion_model | double precision | Predicted criterion after the rotation |
|
|
! | x(n) | double precision | Step |
|
|
! | must_exit | logical | If the program must exit the loop |
|
|
|
|
|
|
subroutine trust_region_step_w_expected_e(n,n2,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
|
|
|
|
include 'pi.h'
|
|
|
|
!BEGIN_DOC
|
|
! Compute the step and the expected criterion/energy after the step
|
|
!END_DOC
|
|
|
|
implicit none
|
|
|
|
! in
|
|
integer, intent(in) :: n,n2, nb_iter
|
|
double precision, intent(in) :: H(n,n2), W(n,n2), v_grad(n)
|
|
double precision, intent(in) :: rho, prev_criterion
|
|
|
|
! inout
|
|
double precision, intent(inout) :: delta, e_val(n)
|
|
|
|
! out
|
|
double precision, intent(out) :: criterion_model, x(n)
|
|
logical, intent(out) :: must_exit
|
|
|
|
! internal
|
|
integer :: info
|
|
|
|
must_exit = .False.
|
|
|
|
call trust_region_step(n,n2,nb_iter,v_grad,rho,e_val,W,x,delta)
|
|
|
|
call trust_region_expected_e(n,n2,v_grad,H,x,prev_criterion,criterion_model)
|
|
|
|
! exit if DABS(prev_criterion - criterion_model) < 1d-12
|
|
if (DABS(prev_criterion - criterion_model) < thresh_model) then
|
|
print*,''
|
|
print*,'###############################################################################'
|
|
print*,'DABS(prev_criterion - criterion_model) <', thresh_model, 'stop the trust region'
|
|
print*,'###############################################################################'
|
|
print*,''
|
|
must_exit = .True.
|
|
endif
|
|
|
|
if (delta < thresh_delta) then
|
|
print*,''
|
|
print*,'##############################################'
|
|
print*,'Delta <', thresh_delta, 'stop the trust region'
|
|
print*,'##############################################'
|
|
print*,''
|
|
must_exit = .True.
|
|
endif
|
|
|
|
! Add after the call to this subroutine, a statement:
|
|
! "if (must_exit) then
|
|
! exit
|
|
! endif"
|
|
! in order to exit the optimization loop
|
|
|
|
end subroutine
|
|
|
|
|
|
|
|
! Variables:
|
|
|
|
! Input:
|
|
! | nb_iter | integer | actual number of iterations |
|
|
! | prev_criterion | double precision | criterion before the application of the step x |
|
|
! | criterion | double precision | criterion after the application of the step x |
|
|
! | criterion_model | double precision | predicted criterion after the application of x |
|
|
|
|
! Output:
|
|
! | rho | double precision | Agreement between the predicted criterion and the real new criterion |
|
|
! | cancel_step | logical | If the step must be cancelled |
|
|
|
|
|
|
subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
|
|
|
|
include 'pi.h'
|
|
|
|
!BEGIN_DOC
|
|
! Compute if the step should be cancelled
|
|
!END_DOC
|
|
|
|
implicit none
|
|
|
|
! in
|
|
double precision, intent(in) :: prev_criterion, criterion, criterion_model
|
|
|
|
! inout
|
|
integer, intent(inout) :: nb_iter
|
|
|
|
! out
|
|
logical, intent(out) :: cancel_step
|
|
double precision, intent(out) :: rho
|
|
|
|
! Computes rho
|
|
call trust_region_rho(prev_criterion,criterion,criterion_model,rho)
|
|
|
|
if (nb_iter == 0) then
|
|
nb_iter = 1 ! in order to enable the change of delta if the first iteration is cancelled
|
|
endif
|
|
|
|
! If rho < thresh_rho -> give something in output to cancel the step
|
|
if (rho >= thresh_rho) then !0.1d0) then
|
|
! The step is accepted
|
|
cancel_step = .False.
|
|
else
|
|
! The step is rejected
|
|
cancel_step = .True.
|
|
print*, '***********************'
|
|
print*, 'Step cancel : rho <', thresh_rho
|
|
print*, '***********************'
|
|
endif
|
|
|
|
end subroutine
|