mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-21 19:13:29 +01:00
563 lines
18 KiB
Org Mode
563 lines
18 KiB
Org Mode
#+title: Configuration Sigma Vector Helpers
|
|
#+author: Vijay Gopal Chilkuri
|
|
#+email: vijay.gopal.c@gmail.com
|
|
|
|
* Generate the singly excited configurations on-the-fly
|
|
|
|
The algorithm is based on the work by Garniron et. al. (see thesis Chap 5).
|
|
The basic idea is to generate \(|\alpha\rangle\)'s on-the-fly.
|
|
|
|
The algorithm is based on the idea of splitting the list of \(|\alpha\rangle\)'s
|
|
into blocks associated with a selected determinant \(|D_I\rangle\).
|
|
|
|
** Create a function to return a list of alphas
|
|
|
|
Here we create a list of \(|\alpha\rangle\)'s associated with
|
|
the input determinant \(|D_I\rangle\).
|
|
|
|
#+begin_src f90 :main no :tangle configuration_CI_sigma_helpers.irp.f
|
|
subroutine obtain_associated_alphaI(idxI, Icfg, alphasIcfg, NalphaIcfg, factor_alphaI)
|
|
implicit none
|
|
use bitmasks
|
|
BEGIN_DOC
|
|
! Documentation for alphasI
|
|
! Returns the associated alpha's for
|
|
! the input configuration Icfg.
|
|
END_DOC
|
|
|
|
integer,intent(in) :: idxI ! The id of the Ith CFG
|
|
integer(bit_kind),intent(in) :: Icfg(N_int,2)
|
|
integer,intent(out) :: NalphaIcfg
|
|
real*8 ,intent(out) :: factor_alphaI(*)
|
|
integer(bit_kind),intent(out) :: alphasIcfg(N_int,2,*)
|
|
logical,dimension(:,:),allocatable :: tableUniqueAlphas
|
|
integer :: listholes(mo_num)
|
|
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
|
|
integer :: nholes
|
|
integer :: nvmos
|
|
integer :: listvmos(mo_num)
|
|
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
|
|
integer*8 :: Idomo
|
|
integer*8 :: Isomo
|
|
integer*8 :: Jdomo
|
|
integer*8 :: Jsomo
|
|
integer*8 :: diffSOMO
|
|
integer*8 :: diffDOMO
|
|
integer :: ndiffSOMO
|
|
integer :: ndiffDOMO
|
|
integer :: ndiffAll
|
|
integer :: i
|
|
integer :: j
|
|
integer :: k
|
|
integer :: hole
|
|
integer :: p
|
|
integer :: q
|
|
integer :: countalphas
|
|
logical :: pqAlreadyGenQ
|
|
logical :: pqExistsQ
|
|
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
|
|
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
|
|
!print*,"Input cfg"
|
|
!call debug_spindet(Isomo,1)
|
|
!call debug_spindet(Idomo,1)
|
|
|
|
!print*,n_act_orb, "monum=",mo_num," n_core=",n_core_orb
|
|
|
|
! find out all pq holes possible
|
|
nholes = 0
|
|
! holes in SOMO
|
|
do i = n_core_orb+1,n_core_orb + n_act_orb
|
|
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
|
|
nholes += 1
|
|
listholes(nholes) = i
|
|
holetype(nholes) = 1
|
|
endif
|
|
end do
|
|
! holes in DOMO
|
|
do i = n_core_orb+1,n_core_orb + n_act_orb
|
|
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
|
|
nholes += 1
|
|
listholes(nholes) = i
|
|
holetype(nholes) = 2
|
|
endif
|
|
end do
|
|
|
|
! find vmos
|
|
listvmos = -1
|
|
vmotype = -1
|
|
nvmos = 0
|
|
do i = n_core_orb+1,n_core_orb + n_act_orb
|
|
!print *,i,IBSET(0,i-1),POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))), POPCNT(IAND(Idomo,(IBSET(0_8,i-1))))
|
|
if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 0 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0) then
|
|
nvmos += 1
|
|
listvmos(nvmos) = i
|
|
vmotype(nvmos) = 1
|
|
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0 ) then
|
|
nvmos += 1
|
|
listvmos(nvmos) = i
|
|
vmotype(nvmos) = 2
|
|
end if
|
|
end do
|
|
|
|
!print *,"Nvmo=",nvmos
|
|
!print *,listvmos
|
|
!print *,vmotype
|
|
|
|
allocate(tableUniqueAlphas(mo_num,mo_num))
|
|
tableUniqueAlphas = .FALSE.
|
|
|
|
! Now find the allowed (p,q) excitations
|
|
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
|
|
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
|
|
!print *,"Isomo"
|
|
!call debug_spindet(Isomo,1)
|
|
!call debug_spindet(Idomo,1)
|
|
|
|
!print *,"Nholes=",nholes," Nvmos=",nvmos, " idxi=",idxI
|
|
!do i = 1,nholes
|
|
! print *,i,"->",listholes(i)
|
|
!enddo
|
|
!do i = 1,nvmos
|
|
! print *,i,"->",listvmos(i)
|
|
!enddo
|
|
|
|
! TODO cfg_seniority_index
|
|
do i = 1,nholes
|
|
p = listholes(i)
|
|
do j = 1,nvmos
|
|
q = listvmos(j)
|
|
if(p == q) cycle
|
|
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
|
! SOMO -> VMO
|
|
Jsomo = IBCLR(Isomo,p-1)
|
|
Jsomo = IBSET(Jsomo,q-1)
|
|
Jdomo = Idomo
|
|
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
|
! SOMO -> SOMO
|
|
Jsomo = IBCLR(Isomo,p-1)
|
|
Jsomo = IBCLR(Jsomo,q-1)
|
|
Jdomo = IBSET(Idomo,q-1)
|
|
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
|
! DOMO -> VMO
|
|
Jsomo = IBSET(Isomo,p-1)
|
|
Jsomo = IBSET(Jsomo,q-1)
|
|
Jdomo = IBCLR(Idomo,p-1)
|
|
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
|
! DOMO -> SOMO
|
|
Jsomo = IBSET(Isomo,p-1)
|
|
Jsomo = IBCLR(Jsomo,q-1)
|
|
Jdomo = IBCLR(Idomo,p-1)
|
|
Jdomo = IBSET(Jdomo,q-1)
|
|
else
|
|
print*,"Something went wrong in obtain_associated_alphaI"
|
|
endif
|
|
|
|
|
|
pqAlreadyGenQ = .FALSE.
|
|
! First check if it can be generated before
|
|
do k = 1, idxI-1
|
|
diffSOMO = IEOR(Jsomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)))
|
|
diffDOMO = IEOR(Jdomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)))
|
|
ndiffSOMO = POPCNT(diffSOMO)
|
|
ndiffDOMO = POPCNT(diffDOMO)
|
|
if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
|
|
pqAlreadyGenQ = .TRUE.
|
|
!print *,i,k,ndiffSOMO,ndiffDOMO
|
|
!call debug_spindet(Jsomo,1)
|
|
!call debug_spindet(Jdomo,1)
|
|
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)),1)
|
|
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)),1)
|
|
EXIT
|
|
endif
|
|
end do
|
|
|
|
if(pqAlreadyGenQ) cycle
|
|
|
|
pqExistsQ = .FALSE.
|
|
! now check if this exists in the selected list
|
|
do k = idxI, N_configuration
|
|
diffSOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jsomo),psi_configuration(1,1,k))
|
|
diffDOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jdomo),psi_configuration(1,2,k))
|
|
ndiffSOMO = POPCNT(diffSOMO)
|
|
ndiffDOMO = POPCNT(diffDOMO)
|
|
if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
|
|
pqExistsQ = .TRUE.
|
|
EXIT
|
|
endif
|
|
end do
|
|
|
|
if(.NOT. pqExistsQ) then
|
|
tableUniqueAlphas(p,q) = .TRUE.
|
|
!print *,p,q
|
|
!call debug_spindet(Jsomo,1)
|
|
!call debug_spindet(Jdomo,1)
|
|
endif
|
|
end do
|
|
end do
|
|
|
|
!print *,tableUniqueAlphas(:,:)
|
|
|
|
! prune list of alphas
|
|
Isomo = Icfg(1,1)
|
|
Idomo = Icfg(1,2)
|
|
Jsomo = Icfg(1,1)
|
|
Jdomo = Icfg(1,2)
|
|
NalphaIcfg = 0
|
|
do i = 1, nholes
|
|
p = listholes(i)
|
|
do j = 1, nvmos
|
|
q = listvmos(j)
|
|
if(p .EQ. q) cycle
|
|
if(tableUniqueAlphas(p,q)) then
|
|
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
|
! SOMO -> VMO
|
|
Jsomo = IBCLR(Isomo,p-1)
|
|
Jsomo = IBSET(Jsomo,q-1)
|
|
Jdomo = Idomo
|
|
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
|
! SOMO -> SOMO
|
|
Jsomo = IBCLR(Isomo,p-1)
|
|
Jsomo = IBCLR(Jsomo,q-1)
|
|
Jdomo = IBSET(Idomo,q-1)
|
|
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
|
! DOMO -> VMO
|
|
Jsomo = IBSET(Isomo,p-1)
|
|
Jsomo = IBSET(Jsomo,q-1)
|
|
Jdomo = IBCLR(Idomo,p-1)
|
|
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
|
! DOMO -> SOMO
|
|
Jsomo = IBSET(Isomo,p-1)
|
|
Jsomo = IBCLR(Jsomo,q-1)
|
|
Jdomo = IBCLR(Idomo,p-1)
|
|
Jdomo = IBSET(Jdomo,q-1)
|
|
else
|
|
print*,"Something went wrong in obtain_associated_alphaI"
|
|
endif
|
|
|
|
NalphaIcfg += 1
|
|
!print *,p,q,"|",holetype(i),vmotype(j),NalphaIcfg
|
|
!call debug_spindet(Idomo,1)
|
|
!call debug_spindet(Jdomo,1)
|
|
alphasIcfg(1,1,NalphaIcfg) = Jsomo
|
|
alphasIcfg(1,2,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
|
endif
|
|
end do
|
|
end do
|
|
|
|
end subroutine
|
|
#+end_src
|
|
|
|
** Given an \(\alpha\) CFG, return all the \(|I\rangle\) CFGs
|
|
|
|
Next step is to obtain the connected CFGs \(|I\rangle\) that belong to the selected space
|
|
given a RI configuration \(|\alpha\rangle\).
|
|
|
|
#+begin_src f90 :main no :tangle ../cfgCI/obtain_I_foralpha.irp.f
|
|
subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI, nconnectedI, excitationIds, excitationTypes)
|
|
implicit none
|
|
use bitmasks
|
|
BEGIN_DOC
|
|
! Documentation for obtain_connected_I_foralpha
|
|
! This function returns all those selected configurations
|
|
! which are connected to the input configuration
|
|
! Ialpha by a single excitation.
|
|
!
|
|
! The type of excitations are ordered as follows:
|
|
! Type 1 - SOMO -> SOMO
|
|
! Type 2 - DOMO -> VMO
|
|
! Type 3 - SOMO -> VMO
|
|
! Type 4 - DOMO -> SOMO
|
|
!
|
|
! Order of operators
|
|
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
|
|
END_DOC
|
|
integer ,intent(in) :: idxI
|
|
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
|
|
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
|
|
integer ,intent(out) :: idxs_connectedI(*)
|
|
integer,intent(out) :: nconnectedI
|
|
integer,intent(out) :: excitationIds(2,*)
|
|
integer,intent(out) :: excitationTypes(*)
|
|
integer*8 :: Idomo
|
|
integer*8 :: Isomo
|
|
integer*8 :: Jdomo
|
|
integer*8 :: Jsomo
|
|
integer*8 :: IJsomo
|
|
integer*8 :: diffSOMO
|
|
integer*8 :: diffDOMO
|
|
integer :: ndiffSOMO
|
|
integer :: ndiffDOMO
|
|
integer :: i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
|
|
integer :: listholes(mo_num)
|
|
integer :: holetype(mo_num)
|
|
|
|
! find out all pq holes possible
|
|
nholes = 0
|
|
! holes in SOMO
|
|
Isomo = psi_configuration(1,1,idxI)
|
|
Idomo = psi_configuration(1,2,idxI)
|
|
do i = n_core_orb+1,n_core_orb + n_act_orb
|
|
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
|
|
nholes += 1
|
|
listholes(nholes) = i
|
|
holetype(nholes) = 1
|
|
endif
|
|
end do
|
|
! holes in DOMO
|
|
do i = n_core_orb+1,n_core_orb + n_act_orb
|
|
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
|
|
nholes += 1
|
|
listholes(nholes) = i
|
|
holetype(nholes) = 2
|
|
endif
|
|
end do
|
|
|
|
nconnectedI = 0
|
|
|
|
p = 0
|
|
q = 0
|
|
do i=idxI+1,N_configuration
|
|
Isomo = Ialpha(1,1)
|
|
Idomo = Ialpha(1,2)
|
|
Jsomo = psi_configuration(1,1,i)
|
|
Jdomo = psi_configuration(1,2,i)
|
|
!call debug_spindet(Isomo,1)
|
|
!call debug_spindet(Idomo,1)
|
|
!print *,"-J--i=",i,Idomo,Jdomo,">",N_configuration
|
|
!call debug_spindet(Jsomo,1)
|
|
!call debug_spindet(Jdomo,1)
|
|
diffSOMO = IEOR(Isomo,Jsomo)
|
|
diffDOMO = IEOR(Idomo,Jdomo)
|
|
ndiffSOMO = POPCNT(diffSOMO)
|
|
ndiffDOMO = POPCNT(diffDOMO)
|
|
if((ndiffSOMO + ndiffDOMO) .EQ. 0) cycle
|
|
!print *,"-I--i=",i,diffSOMO,diffDOMO!Isomo,Jsomo,ndiffSOMO,ndiffDOMO
|
|
!print *,POPCNT(IEOR(diffSOMO,diffDOMO)), ndiffDOMO
|
|
if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
|
|
!call debug_spindet(Isomo,1)
|
|
!call debug_spindet(Idomo,1)
|
|
!print *,"-J--i=",i,Idomo,Jdomo,">",N_configuration
|
|
!call debug_spindet(Jsomo,1)
|
|
!call debug_spindet(Jdomo,1)
|
|
select case(ndiffDOMO)
|
|
case (0)
|
|
! SOMO -> VMO
|
|
!print *,"obt SOMO -> VMO"
|
|
extyp = 3
|
|
IJsomo = IEOR(Isomo, Jsomo)
|
|
p = TRAILZ(IAND(Isomo,IJsomo)) + 1
|
|
IJsomo = IBCLR(IJsomo,p-1)
|
|
q = TRAILZ(IJsomo) + 1
|
|
case (1)
|
|
! DOMO -> VMO
|
|
! or
|
|
! SOMO -> SOMO
|
|
nsomoJ = POPCNT(Jsomo)
|
|
nsomoalpha = POPCNT(Isomo)
|
|
if(nsomoJ .GT. nsomoalpha) then
|
|
! DOMO -> VMO
|
|
!print *,"obt DOMO -> VMO"
|
|
extyp = 2
|
|
p = TRAILZ(IEOR(Idomo,Jdomo)) + 1
|
|
Isomo = IEOR(Isomo, Jsomo)
|
|
Isomo = IBCLR(Isomo,p-1)
|
|
q = TRAILZ(Isomo) + 1
|
|
else
|
|
! SOMO -> SOMO
|
|
!print *,"obt SOMO -> SOMO"
|
|
extyp = 1
|
|
q = TRAILZ(IEOR(Idomo,Jdomo)) + 1
|
|
Isomo = IEOR(Isomo, Jsomo)
|
|
Isomo = IBCLR(Isomo,q-1)
|
|
p = TRAILZ(Isomo) + 1
|
|
end if
|
|
case (2)
|
|
! DOMO -> SOMO
|
|
!print *,"obt DOMO -> SOMO"
|
|
extyp = 4
|
|
IJsomo = IEOR(Isomo, Jsomo)
|
|
p = TRAILZ(IAND(Jsomo,IJsomo)) + 1
|
|
IJsomo = IBCLR(IJsomo,p-1)
|
|
q = TRAILZ(IJsomo) + 1
|
|
case default
|
|
print *,"something went wront in get connectedI"
|
|
end select
|
|
starti = psi_config_data(i,1)
|
|
endi = psi_config_data(i,2)
|
|
nconnectedI += 1
|
|
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
|
|
idxs_connectedI(nconnectedI)=starti
|
|
excitationIds(1,nconnectedI)=p
|
|
excitationIds(2,nconnectedI)=q
|
|
excitationTypes(nconnectedI) = extyp
|
|
print *,"------ > output p,q in obt=",p,q
|
|
endif
|
|
end do
|
|
|
|
end subroutine obtain_connected_I_foralpha
|
|
#+end_src
|
|
|
|
#+begin_src fortran
|
|
print *,TRAILZ(8)
|
|
print *,IBCLR(8,TRAILZ(9))
|
|
print *,TRAILZ(IBCLR(8,TRAILZ(9)))
|
|
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
| 3 |
|
|
| 8 |
|
|
| 3 |
|
|
|
|
** Function to get the NSOMOs (seniority)
|
|
|
|
#+begin_src f90 :main no :tangle configuration_CI_sigma_helpers.irp.f
|
|
function getNSOMO(Icfg) result(NSOMO)
|
|
implicit none
|
|
integer(bit_kind),intent(in) :: Icfg(N_int,2)
|
|
integer :: NSOMO
|
|
integer :: i
|
|
NSOMO = 0
|
|
do i = 1,N_int
|
|
NSOMO += POPCNT(Icfg(i,1))
|
|
enddo
|
|
end function getNSOMO
|
|
#+end_src
|
|
|
|
** Function to convert p,q to model space ids
|
|
|
|
This function converts the real orbital ids \(i,j\) to model
|
|
space ids \(p,q\) which depend only on the number of somos.
|
|
|
|
#+begin_src f90 :main no :tangle configuration_CI_sigma_helpers.irp.f
|
|
subroutine convertOrbIdsToModelSpaceIds(Ialpha, Jcfg, p, q, extype, pmodel, qmodel)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! This function converts the orbital ids
|
|
! in real space to those used in model space
|
|
! in order to identify the matrices required
|
|
! for the calculation of MEs.
|
|
!
|
|
! The type of excitations are ordered as follows:
|
|
! Type 1 - SOMO -> SOMO
|
|
! Type 2 - DOMO -> VMO
|
|
! Type 3 - SOMO -> VMO
|
|
! Type 4 - DOMO -> SOMO
|
|
END_DOC
|
|
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
|
|
integer(bit_kind),intent(in) :: Jcfg(N_int,2)
|
|
integer,intent(in) :: p,q
|
|
integer,intent(in) :: extype
|
|
integer,intent(out) :: pmodel,qmodel
|
|
integer*8 :: Isomo
|
|
integer*8 :: Idomo
|
|
integer*8 :: Jsomo
|
|
integer*8 :: Jdomo
|
|
integer*8 :: mask
|
|
integer*8 :: Isomotmp
|
|
integer*8 :: Jsomotmp
|
|
integer :: pos0,pos0prev
|
|
|
|
! TODO Flag (print) when model space indices is > 64
|
|
Isomo = Ialpha(1,1)
|
|
Idomo = Ialpha(1,2)
|
|
Jsomo = Jcfg(1,1)
|
|
Jdomo = Jcfg(1,2)
|
|
pos0prev = 0
|
|
pmodel = p
|
|
qmodel = q
|
|
|
|
if(p .EQ. q) then
|
|
pmodel = 1
|
|
qmodel = 1
|
|
else
|
|
!print *,"input pq=",p,q,"extype=",extype
|
|
!call debug_spindet(Isomo,1)
|
|
!call debug_spindet(Idomo,1)
|
|
!call debug_spindet(Jsomo,1)
|
|
!call debug_spindet(Jdomo,1)
|
|
select case(extype)
|
|
case (1)
|
|
! SOMO -> SOMO
|
|
! remove all domos
|
|
!print *,"type -> SOMO -> SOMO"
|
|
mask = ISHFT(1_8,p) - 1
|
|
Isomotmp = IAND(Isomo,mask)
|
|
pmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
|
|
mask = ISHFT(1_8,q) - 1
|
|
Isomotmp = IAND(Isomo,mask)
|
|
qmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
|
|
case (2)
|
|
! DOMO -> VMO
|
|
! remove all domos except one at p
|
|
!print *,"type -> DOMO -> VMO"
|
|
mask = ISHFT(1_8,p) - 1
|
|
Jsomotmp = IAND(Jsomo,mask)
|
|
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
|
|
mask = ISHFT(1_8,q) - 1
|
|
Jsomotmp = IAND(Jsomo,mask)
|
|
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
|
|
case (3)
|
|
! SOMO -> VMO
|
|
!print *,"type -> SOMO -> VMO"
|
|
!Isomo = IEOR(Isomo,Jsomo)
|
|
mask = ISHFT(1_8,p) - 1
|
|
Isomo = IAND(Isomo,mask)
|
|
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
|
|
mask = ISHFT(1_8,q) - 1
|
|
Jsomo = IAND(Jsomo,mask)
|
|
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
|
|
case (4)
|
|
! DOMO -> SOMO
|
|
! remove all domos except one at p
|
|
!print *,"type -> DOMO -> SOMO"
|
|
!Isomo = IEOR(Isomo,Jsomo)
|
|
mask = ISHFT(1_8,p) - 1
|
|
Jsomo = IAND(Jsomo,mask)
|
|
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
|
|
mask = ISHFT(1_8,q) - 1
|
|
Isomo = IAND(Isomo,mask)
|
|
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
|
|
case default
|
|
print *,"something is wrong in convertOrbIdsToModelSpaceIds"
|
|
end select
|
|
endif
|
|
!print *,p,q,"model ids=",pmodel,qmodel
|
|
end subroutine convertOrbIdsToModelSpaceIds
|
|
#+end_src
|
|
|
|
#+begin_src fortran
|
|
integer :: i
|
|
integer :: count
|
|
integer :: mask
|
|
integer :: isomo
|
|
count = 0
|
|
mask = ISHFT(1_8,5)-1
|
|
print *,mask
|
|
print *,POPCNT(mask)
|
|
isomo = 144
|
|
isomo = IAND(isomo,mask)
|
|
print *,isomo
|
|
print *,XOR(isomo,mask)
|
|
print *,POPCNT(mask) - POPCNT(XOR(isomo,mask))
|
|
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
| 31 |
|
|
| 5 |
|
|
| 16 |
|
|
| 15 |
|
|
| 1 |
|
|
|
|
#+begin_src fortran
|
|
print *,IBSET(0_8,4)-1
|
|
print *,POPCNT(IBSET(0_8,4)-1) - POPCNT(IAND(716,IBSET(0_8,4)-1))
|
|
print *,POPCNT(IBSET(0_8,8)-1) - POPCNT(IAND(716,IBSET(0_8,8)-1))
|
|
#+end_src
|
|
|
|
#+RESULTS:
|
|
| 15 |
|
|
| 2 |
|
|
| 4 |
|