mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-07 22:13:38 +01:00
717 lines
24 KiB
Fortran
717 lines
24 KiB
Fortran
! Trust region
|
|
|
|
! *Compute the next step with the trust region algorithm*
|
|
|
|
! The Newton method is an iterative method to find a minimum of a given
|
|
! function. It uses a Taylor series truncated at the second order of the
|
|
! targeted function and gives its minimizer. The minimizer is taken as
|
|
! the new position and the same thing is done. And by doing so
|
|
! iteratively the method find a minimum, a local or global one depending
|
|
! of the starting point and the convexity/nonconvexity of the targeted
|
|
! function.
|
|
|
|
! The goal of the trust region is to constrain the step size of the
|
|
! Newton method in a certain area around the actual position, where the
|
|
! Taylor series is a good approximation of the targeted function. This
|
|
! area is called the "trust region".
|
|
|
|
! In addition, in function of the agreement between the Taylor
|
|
! development of the energy and the real energy, the size of the trust
|
|
! region will be updated at each iteration. By doing so, the step sizes
|
|
! are not too larges. In addition, since we add a criterion to cancel the
|
|
! step if the energy increases (more precisely if rho < 0.1), so it's
|
|
! impossible to diverge. \newline
|
|
|
|
! References: \newline
|
|
! Nocedal & Wright, Numerical Optimization, chapter 4 (1999), \newline
|
|
! https://link.springer.com/book/10.1007/978-0-387-40065-5, \newline
|
|
! ISBN: 978-0-387-40065-5 \newline
|
|
|
|
! By using the first and the second derivatives, the Newton method gives
|
|
! a step:
|
|
! \begin{align*}
|
|
! \textbf{x}_{(k+1)}^{\text{Newton}} = - \textbf{H}_{(k)}^{-1} \cdot
|
|
! \textbf{g}_{(k)}
|
|
! \end{align*}
|
|
! which leads to the minimizer of the Taylor series.
|
|
! !!! Warning: the Newton method gives the minimizer if and only if
|
|
! $\textbf{H}$ is positive definite, else it leads to a saddle point !!!
|
|
! But we want a step $\textbf{x}_{(k+1)}$ with a constraint on its (euclidian) norm:
|
|
! \begin{align*}
|
|
! ||\textbf{x}_{(k+1)}|| \leq \Delta_{(k+1)}
|
|
! \end{align*}
|
|
! which is equivalent to
|
|
! \begin{align*}
|
|
! \textbf{x}_{(k+1)}^T \cdot \textbf{x}_{(k+1)} \leq \Delta_{(k+1)}^2
|
|
! \end{align*}
|
|
|
|
! with: \newline
|
|
! $\textbf{x}_{(k+1)}$ is the step for the k+1-th iteration (vector of
|
|
! size n) \newline
|
|
! $\textbf{H}_{(k)}$ is the hessian at the k-th iteration (n by n
|
|
! matrix) \newline
|
|
! $\textbf{g}_{(k)}$ is the gradient at the k-th iteration (vector of
|
|
! size n) \newline
|
|
! $\Delta_{(k+1)}$ is the trust radius for the (k+1)-th iteration
|
|
! \newline
|
|
|
|
! Thus we want to constrain the step size $\textbf{x}_{(k+1)}$ into a
|
|
! hypersphere of radius $\Delta_{(k+1)}$.\newline
|
|
|
|
! So, if $||\textbf{x}_{(k+1)}^{\text{Newton}}|| \leq \Delta_{(k)}$ and
|
|
! $\textbf{H}$ is positive definite, the
|
|
! solution is the step given by the Newton method
|
|
! $\textbf{x}_{(k+1)} = \textbf{x}_{(k+1)}^{\text{Newton}}$.
|
|
! Else we have to constrain the step size. For simplicity we will remove
|
|
! the index $_{(k)}$ and $_{(k+1)}$. To restict the step size, we have
|
|
! to put a constraint on $\textbf{x}$ with a Lagrange multiplier.
|
|
! Starting from the Taylor series of a function E (here, the energy)
|
|
! truncated at the 2nd order, we have:
|
|
! \begin{align*}
|
|
! E(\textbf{x}) = E +\textbf{g}^T \cdot \textbf{x} + \frac{1}{2}
|
|
! \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x} +
|
|
! \mathcal{O}(\textbf{x}^2)
|
|
! \end{align*}
|
|
|
|
! With the constraint on the norm of $\textbf{x}$ we can write the
|
|
! Lagrangian
|
|
! \begin{align*}
|
|
! \mathcal{L}(\textbf{x},\lambda) = E + \textbf{g}^T \cdot \textbf{x}
|
|
! + \frac{1}{2} \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x}
|
|
! + \frac{1}{2} \lambda (\textbf{x}^T \cdot \textbf{x} - \Delta^2)
|
|
! \end{align*}
|
|
! Where: \newline
|
|
! $\lambda$ is the Lagrange multiplier \newline
|
|
! $E$ is the energy at the k-th iteration $\Leftrightarrow
|
|
! E(\textbf{x} = \textbf{0})$ \newline
|
|
|
|
! To solve this equation, we search a stationary point where the first
|
|
! derivative of $\mathcal{L}$ with respect to $\textbf{x}$ becomes 0, i.e.
|
|
! \begin{align*}
|
|
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}=0
|
|
! \end{align*}
|
|
|
|
! The derivative is:
|
|
! \begin{align*}
|
|
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
|
|
! = \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
|
|
! \end{align*}
|
|
|
|
! So, we search $\textbf{x}$ such as:
|
|
! \begin{align*}
|
|
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
|
|
! = \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x} = 0
|
|
! \end{align*}
|
|
|
|
! We can rewrite that as:
|
|
! \begin{align*}
|
|
! \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
|
|
! = \textbf{g} + (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x} = 0
|
|
! \end{align*}
|
|
! with $\textbf{I}$ is the identity matrix.
|
|
|
|
! By doing so, the solution is:
|
|
! \begin{align*}
|
|
! (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x}= -\textbf{g}
|
|
! \end{align*}
|
|
! \begin{align*}
|
|
! \textbf{x}= - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
|
|
! \end{align*}
|
|
! with $\textbf{x}^T \textbf{x} = \Delta^2$.
|
|
|
|
! We have to solve this previous equation to find this $\textbf{x}$ in the
|
|
! trust region, i.e. $||\textbf{x}|| = \Delta$. Now, this problem is
|
|
! just a one dimension problem because we can express $\textbf{x}$ as a
|
|
! function of $\lambda$:
|
|
! \begin{align*}
|
|
! \textbf{x}(\lambda) = - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
|
|
! \end{align*}
|
|
|
|
! We start from the fact that the hessian is diagonalizable. So we have:
|
|
! \begin{align*}
|
|
! \textbf{H} = \textbf{W} \cdot \textbf{h} \cdot \textbf{W}^T
|
|
! \end{align*}
|
|
! with: \newline
|
|
! $\textbf{H}$, the hessian matrix \newline
|
|
! $\textbf{W}$, the matrix containing the eigenvectors \newline
|
|
! $\textbf{w}_i$, the i-th eigenvector, i.e. i-th column of $\textbf{W}$ \newline
|
|
! $\textbf{h}$, the matrix containing the eigenvalues in ascending order \newline
|
|
! $h_i$, the i-th eigenvalue in ascending order \newline
|
|
|
|
! Now we use the fact that adding a constant on the diagonal just shifts
|
|
! the eigenvalues:
|
|
! \begin{align*}
|
|
! \textbf{H} + \textbf{I} \lambda = \textbf{W} \cdot (\textbf{h}
|
|
! +\textbf{I} \lambda) \cdot \textbf{W}^T
|
|
! \end{align*}
|
|
|
|
! By doing so we can express $\textbf{x}$ as a function of $\lambda$
|
|
! \begin{align*}
|
|
! \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
|
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
|
! \end{align*}
|
|
! with $\lambda \neq - h_i$.
|
|
|
|
! An interesting thing in our case is the norm of $\textbf{x}$,
|
|
! because we want $||\textbf{x}|| = \Delta$. Due to the orthogonality of
|
|
! the eigenvectors $\left\{\textbf{w} \right\} _{i=1}^n$ we have:
|
|
! \begin{align*}
|
|
! ||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot
|
|
! \textbf{g})^2}{(h_i + \lambda)^2}
|
|
! \end{align*}
|
|
|
|
! So the $||\textbf{x}(\lambda)||^2$ is just a function of $\lambda$.
|
|
! And if we study the properties of this function we see that:
|
|
! \begin{align*}
|
|
! \lim_{\lambda\to\infty} ||\textbf{x}(\lambda)|| = 0
|
|
! \end{align*}
|
|
! and if $\textbf{w}_i^T \cdot \textbf{g} \neq 0$:
|
|
! \begin{align*}
|
|
! \lim_{\lambda\to -h_i} ||\textbf{x}(\lambda)|| = + \infty
|
|
! \end{align*}
|
|
|
|
! From these limits and knowing that $h_1$ is the lowest eigenvalue, we
|
|
! can conclude that $||\textbf{x}(\lambda)||$ is a continuous and
|
|
! strictly decreasing function on the interval $\lambda \in
|
|
! (-h_1;\infty)$. Thus, there is one $\lambda$ in this interval which
|
|
! gives $||\textbf{x}(\lambda)|| = \Delta$, consequently there is one
|
|
! solution.
|
|
|
|
! Since $\textbf{x} = - (\textbf{H} + \lambda \textbf{I})^{-1} \cdot
|
|
! \textbf{g}$ and we want to reduce the norm of $\textbf{x}$, clearly,
|
|
! $\lambda > 0$ ($\lambda = 0$ is the unconstraint solution). But the
|
|
! Newton method is only defined for a positive definite hessian matrix,
|
|
! so $(\textbf{H} + \textbf{I} \lambda)$ must be positive
|
|
! definite. Consequently, in the case where $\textbf{H}$ is not positive
|
|
! definite, to ensure the positive definiteness, $\lambda$ must be
|
|
! greater than $- h_1$.
|
|
! \begin{align*}
|
|
! \lambda > 0 \quad \text{and} \quad \lambda \geq - h_1
|
|
! \end{align*}
|
|
|
|
! From that there are five cases:
|
|
! - if $\textbf{H}$ is positive definite, $-h_1 < 0$, $\lambda \in (0,\infty)$
|
|
! - if $\textbf{H}$ is not positive definite and $\textbf{w}_1^T \cdot
|
|
! \textbf{g} \neq 0$, $(\textbf{H} + \textbf{I}
|
|
! \lambda)$
|
|
! must be positve definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty)$
|
|
! - if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
|
|
! \textbf{g} = 0$ and $||\textbf{x}(-h_1)|| > \Delta$ by removing
|
|
! $j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
|
|
! positive definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty$)
|
|
! - if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
|
|
! \textbf{g} = 0$ and $||\textbf{x}(-h_1)|| \leq \Delta$ by removing
|
|
! $j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
|
|
! positive definite, $-h_1 > 0$, $\lambda = -h_1$). This case is
|
|
! similar to the case where $\textbf{H}$ and $||\textbf{x}(\lambda =
|
|
! 0)|| \leq \Delta$
|
|
! but we can also add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
|
|
! time a constant to ensure the condition $||\textbf{x}(\lambda =
|
|
! -h_1)|| = \Delta$ and escape from the saddle point
|
|
|
|
! Thus to find the solution, we can write:
|
|
! \begin{align*}
|
|
! ||\textbf{x}(\lambda)|| = \Delta
|
|
! \end{align*}
|
|
! \begin{align*}
|
|
! ||\textbf{x}(\lambda)|| - \Delta = 0
|
|
! \end{align*}
|
|
|
|
! Taking the square of this equation
|
|
! \begin{align*}
|
|
! (||\textbf{x}(\lambda)|| - \Delta)^2 = 0
|
|
! \end{align*}
|
|
! we have a function with one minimum for the optimal $\lambda$.
|
|
! Since we have the formula of $||\textbf{x}(\lambda)||^2$, we solve
|
|
! \begin{align*}
|
|
! (||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
|
|
! \end{align*}
|
|
|
|
! But in practice, it is more effective to solve:
|
|
! \begin{align*}
|
|
! (\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
|
|
! \end{align*}
|
|
|
|
! To do that, we just use the Newton method with "trust_newton" using
|
|
! first and second derivative of $(||\textbf{x}(\lambda)||^2 -
|
|
! \Delta^2)^2$ with respect to $\textbf{x}$.
|
|
! This will give the optimal $\lambda$ to compute the
|
|
! solution $\textbf{x}$ with the formula seen previously:
|
|
! \begin{align*}
|
|
! \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
|
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
|
! \end{align*}
|
|
|
|
! The solution $\textbf{x}(\lambda)$ with the optimal $\lambda$ is our
|
|
! step to go from the (k)-th to the (k+1)-th iteration, is noted $\textbf{x}^*$.
|
|
|
|
|
|
|
|
|
|
! Evolution of the trust region
|
|
|
|
! We initialize the trust region at the first iteration using a radius
|
|
! \begin{align*}
|
|
! \Delta = ||\textbf{x}(\lambda=0)||
|
|
! \end{align*}
|
|
|
|
! And for the next iteration the trust region will evolves depending of
|
|
! the agreement of the energy prediction based on the Taylor series
|
|
! truncated at the 2nd order and the real energy. If the Taylor series
|
|
! truncated at the 2nd order represents correctly the energy landscape
|
|
! the trust region will be extent else it will be reduced. In order to
|
|
! mesure this agreement we use the ratio rho cf. "rho_model" and
|
|
! "trust_e_model". From that we use the following values:
|
|
! - if $\rho \geq 0.75$, then $\Delta = 2 \Delta$,
|
|
! - if $0.5 \geq \rho < 0.75$, then $\Delta = \Delta$,
|
|
! - if $0.25 \geq \rho < 0.5$, then $\Delta = 0.5 \Delta$,
|
|
! - if $\rho < 0.25$, then $\Delta = 0.25 \Delta$.
|
|
|
|
! In addition, if $\rho < 0.1$ the iteration is cancelled, so it
|
|
! restarts with a smaller trust region until the energy decreases.
|
|
|
|
|
|
|
|
|
|
! Summary
|
|
|
|
! To summarize, knowing the hessian (eigenvectors and eigenvalues), the
|
|
! gradient and the radius of the trust region we can compute the norm of
|
|
! the Newton step
|
|
! \begin{align*}
|
|
! ||\textbf{x}(\lambda = 0)||^2 = ||- \textbf{H}^{-1} \cdot \textbf{g}||^2 = \sum_{i=1}^n
|
|
! \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2}, \quad h_i \neq 0
|
|
! \end{align*}
|
|
|
|
! - if $h_1 \geq 0$, $||\textbf{x}(\lambda = 0)|| \leq \Delta$ and
|
|
! $\textbf{x}(\lambda=0)$ is in the trust region and it is not
|
|
! necessary to put a constraint on $\textbf{x}$, the solution is the
|
|
! unconstrained one, $\textbf{x}^* = \textbf{x}(\lambda = 0)$.
|
|
! - else if $h_1 < 0$, $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
|
|
! $||\textbf{x}(\lambda = -h_1)|| \leq \Delta$ (by removing $j=1$ in
|
|
! the sum), the solution is $\textbf{x}^* = \textbf{x}(\lambda =
|
|
! -h_1)$, similarly to the previous case.
|
|
! But we can add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
|
|
! time a constant to ensure the condition $||\textbf{x}(\lambda =
|
|
! -h_1)|| = \Delta$ and escape from the saddle point
|
|
! - else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} \neq 0$ we
|
|
! have to search $\lambda \in (-h_1, \infty)$ such as
|
|
! $\textbf{x}(\lambda) = \Delta$ by solving with the Newton method
|
|
! \begin{align*}
|
|
! (||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
|
|
! \end{align*}
|
|
! or
|
|
! \begin{align*}
|
|
! (\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
|
|
! \end{align*}
|
|
! which is numerically more stable. And finally compute
|
|
! \begin{align*}
|
|
! \textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
|
|
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
|
|
! \end{align*}
|
|
! - else if $h_1 \geq 0$ and $||\textbf{x}(\lambda = 0)|| > \Delta$ we
|
|
! do exactly the same thing that the previous case but we search
|
|
! $\lambda \in (0, \infty)$
|
|
! - else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
|
|
! $||\textbf{x}(\lambda = -h_1)|| > \Delta$ (by removing $j=1$ in the
|
|
! sum), again we do exactly the same thing that the previous case
|
|
! searching $\lambda \in (-h_1, \infty)$.
|
|
|
|
|
|
! For the cases where $\textbf{w}_1^T \cdot \textbf{g} = 0$ it is not
|
|
! necessary in fact to remove the $j = 1$ in the sum since the term
|
|
! where $h_i - \lambda < 10^{-6}$ are not computed.
|
|
|
|
! After that, we take this vector $\textbf{x}^*$, called "x", and we do
|
|
! the transformation to an antisymmetric matrix $\textbf{X}$, called
|
|
! m_x. This matrix $\textbf{X}$ will be used to compute a rotation
|
|
! matrix $\textbf{R}= \exp(\textbf{X})$ in "rotation_matrix".
|
|
|
|
! NB:
|
|
! An improvement can be done using a elleptical trust region.
|
|
|
|
|
|
|
|
|
|
! Code
|
|
|
|
! Provided:
|
|
! | mo_num | integer | number of MOs |
|
|
|
|
! Cf. qp_edit in orbital optimization section, for some constants/thresholds
|
|
|
|
! Input:
|
|
! | m | integer | number of MOs |
|
|
! | n | integer | m*(m-1)/2 |
|
|
! | H(n, n) | double precision | hessian |
|
|
! | v_grad(n) | double precision | gradient |
|
|
! | e_val(n) | double precision | eigenvalues of the hessian |
|
|
! | W(n, n) | double precision | eigenvectors of the hessian |
|
|
! | rho | double precision | agreement between the model and the reality, |
|
|
! | | | represents the quality of the energy prediction |
|
|
! | nb_iter | integer | number of iteration |
|
|
|
|
! Input/Ouput:
|
|
! | delta | double precision | radius of the trust region |
|
|
|
|
! Output:
|
|
! | x(n) | double precision | vector containing the step |
|
|
|
|
! Internal:
|
|
! | accu | double precision | temporary variable to compute the step |
|
|
! | lambda | double precision | lagrange multiplier |
|
|
! | trust_radius2 | double precision | square of the radius of the trust region |
|
|
! | norm2_x | double precision | norm^2 of the vector x |
|
|
! | norm2_g | double precision | norm^2 of the vector containing the gradient |
|
|
! | tmp_wtg(n) | double precision | tmp_wtg(i) = w_i^T . g |
|
|
! | i, j, k | integer | indexes |
|
|
|
|
! Function:
|
|
! | dnrm2 | double precision | Blas function computing the norm |
|
|
! | f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) |
|
|
|
|
|
|
subroutine trust_region_step(n,nb_iter,v_grad,rho,e_val,w,x,delta)
|
|
|
|
include 'pi.h'
|
|
|
|
BEGIN_DOC
|
|
! Compuet the step in the trust region
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
! Variables
|
|
|
|
! in
|
|
integer, intent(in) :: n
|
|
double precision, intent(in) :: v_grad(n), rho
|
|
integer, intent(inout) :: nb_iter
|
|
double precision, intent(in) :: e_val(n), w(n,n)
|
|
|
|
! inout
|
|
double precision, intent(inout) :: delta
|
|
|
|
! out
|
|
double precision, intent(out) :: x(n)
|
|
|
|
! Internal
|
|
double precision :: accu, lambda, trust_radius2
|
|
double precision :: norm2_x, norm2_g
|
|
double precision, allocatable :: tmp_wtg(:)
|
|
integer :: i,j,k
|
|
double precision :: t1,t2,t3
|
|
integer :: n_neg_eval
|
|
|
|
|
|
! Functions
|
|
double precision :: ddot, dnrm2
|
|
double precision :: f_norm_trust_region_omp
|
|
|
|
print*,''
|
|
print*,'=================='
|
|
print*,'---Trust_region---'
|
|
print*,'=================='
|
|
|
|
call wall_time(t1)
|
|
|
|
! Allocation
|
|
allocate(tmp_wtg(n))
|
|
|
|
! Initialization and norm
|
|
|
|
! The norm of the step size will be useful for the trust region
|
|
! algorithm. We start from a first guess and the radius of the trust
|
|
! region will evolve during the optimization.
|
|
|
|
! avoid_saddle is actually a test to avoid saddle points
|
|
|
|
|
|
! Initialization of the Lagrange multiplier
|
|
lambda = 0d0
|
|
|
|
! List of w^T.g, to avoid the recomputation
|
|
tmp_wtg = 0d0
|
|
do j = 1, n
|
|
do i = 1, n
|
|
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i)
|
|
enddo
|
|
enddo
|
|
|
|
! Replacement of the small tmp_wtg corresponding to a negative eigenvalue
|
|
! in the case of avoid_saddle
|
|
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
|
|
i = 2
|
|
! Number of negative eigenvalues
|
|
do while (e_val(i) < - thresh_eig)
|
|
if (tmp_wtg(i) < thresh_wtg2) then
|
|
if (version_avoid_saddle == 1) then
|
|
tmp_wtg(i) = 1d0
|
|
elseif (version_avoid_saddle == 2) then
|
|
tmp_wtg(i) = DABS(e_val(i))
|
|
elseif (version_avoid_saddle == 3) then
|
|
tmp_wtg(i) = dsqrt(DABS(e_val(i)))
|
|
else
|
|
tmp_wtg(i) = thresh_wtg2
|
|
endif
|
|
endif
|
|
i = i + 1
|
|
enddo
|
|
|
|
! For the fist one it's a little bit different
|
|
if (tmp_wtg(1) < thresh_wtg2) then
|
|
tmp_wtg(1) = 0d0
|
|
endif
|
|
|
|
endif
|
|
|
|
! Norm^2 of x, ||x||^2
|
|
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
|
|
! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta
|
|
! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm
|
|
! Anyway if the step is too big it will be reduced
|
|
print*,'||x||^2 :', norm2_x
|
|
|
|
! Norm^2 of the gradient, ||v_grad||^2
|
|
norm2_g = (dnrm2(n,v_grad,1))**2
|
|
print*,'||grad||^2 :', norm2_g
|
|
|
|
! Trust radius initialization
|
|
|
|
! At the first iteration (nb_iter = 0) we initialize the trust region
|
|
! with the norm of the step generate by the Newton's method ($\textbf{x}_1 =
|
|
! (\textbf{H}_0)^{-1} \cdot \textbf{g}_0$,
|
|
! we compute this norm using f_norm_trust_region_omp as explain just
|
|
! below)
|
|
|
|
|
|
! trust radius
|
|
if (nb_iter == 0) then
|
|
trust_radius2 = norm2_x
|
|
! To avoid infinite loop of cancellation of this first step
|
|
! without changing delta
|
|
nb_iter = 1
|
|
|
|
! Compute delta, delta = sqrt(trust_radius)
|
|
delta = dsqrt(trust_radius2)
|
|
endif
|
|
|
|
! Modification of the trust radius
|
|
|
|
! In function of rho (which represents the agreement between the model
|
|
! and the reality, cf. rho_model) the trust region evolves. We update
|
|
! delta (the radius of the trust region).
|
|
|
|
! To avoid too big trust region we put a maximum size.
|
|
|
|
|
|
! Modification of the trust radius in function of rho
|
|
if (rho >= 0.75d0) then
|
|
delta = 2d0 * delta
|
|
elseif (rho >= 0.5d0) then
|
|
delta = delta
|
|
elseif (rho >= 0.25d0) then
|
|
delta = 0.5d0 * delta
|
|
else
|
|
delta = 0.25d0 * delta
|
|
endif
|
|
|
|
! Maximum size of the trust region
|
|
!if (delta > 0.5d0 * n * pi) then
|
|
! delta = 0.5d0 * n * pi
|
|
! print*,'Delta > delta_max, delta = 0.5d0 * n * pi'
|
|
!endif
|
|
|
|
if (delta > 1d10) then
|
|
delta = 1d10
|
|
endif
|
|
|
|
print*, 'Delta :', delta
|
|
|
|
! Calculation of the optimal lambda
|
|
|
|
! We search the solution of $(||x||^2 - \Delta^2)^2 = 0$
|
|
! - If $||\textbf{x}|| > \Delta$ or $h_1 < 0$ we have to add a constant
|
|
! $\lambda > 0 \quad \text{and} \quad \lambda > -h_1$
|
|
! - If $||\textbf{x}|| \leq \Delta$ and $h_1 \geq 0$ the solution is the
|
|
! unconstrained one, $\lambda = 0$
|
|
|
|
! You will find more details at the beginning
|
|
|
|
|
|
! By giving delta, we search (||x||^2 - delta^2)^2 = 0
|
|
! and not (||x||^2 - delta)^2 = 0
|
|
|
|
! Research of lambda to solve ||x(lambda)|| = Delta
|
|
|
|
! Display
|
|
print*, 'e_val(1) = ', e_val(1)
|
|
print*, 'w_1^T.g =', tmp_wtg(1)
|
|
|
|
! H positive definite
|
|
if (e_val(1) > - thresh_eig) then
|
|
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
|
|
print*, '||x(0)||=', dsqrt(norm2_x)
|
|
print*, 'Delta=', delta
|
|
|
|
! H positive definite, ||x(lambda = 0)|| <= Delta
|
|
if (dsqrt(norm2_x) <= delta) then
|
|
print*, 'H positive definite, ||x(lambda = 0)|| <= Delta'
|
|
print*, 'lambda = 0, no lambda optimization'
|
|
lambda = 0d0
|
|
|
|
! H positive definite, ||x(lambda = 0)|| > Delta
|
|
else
|
|
! Constraint solution
|
|
print*, 'H positive definite, ||x(lambda = 0)|| > Delta'
|
|
print*,'Computation of the optimal lambda...'
|
|
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
|
endif
|
|
|
|
! H indefinite
|
|
else
|
|
if (DABS(tmp_wtg(1)) < thresh_wtg) then
|
|
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1))
|
|
print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x)
|
|
endif
|
|
|
|
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta
|
|
if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then
|
|
! Add e_val(1) in order to have (H - e_val(1) I) positive definite
|
|
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta'
|
|
print*, 'lambda = -e_val(1), no lambda optimization'
|
|
lambda = - e_val(1)
|
|
|
|
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta
|
|
! and
|
|
! H indefinite, w_1^T.g =/= 0
|
|
else
|
|
! Constraint solution/ add lambda
|
|
if (DABS(tmp_wtg(1)) < thresh_wtg) then
|
|
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta'
|
|
else
|
|
print*, 'H indefinite, w_1^T.g =/= 0'
|
|
endif
|
|
print*, 'Computation of the optimal lambda...'
|
|
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
|
|
endif
|
|
|
|
endif
|
|
|
|
! Recomputation of the norm^2 of the step x
|
|
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
|
|
print*,''
|
|
print*,'Summary after the trust region:'
|
|
print*,'lambda:', lambda
|
|
print*,'||x||:', dsqrt(norm2_x)
|
|
print*,'delta:', delta
|
|
|
|
! Calculation of the step x
|
|
|
|
! x refers to $\textbf{x}^*$
|
|
! We compute x in function of lambda using its formula :
|
|
! \begin{align*}
|
|
! \textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot \textbf{g}}{h_i
|
|
! + \lambda} \cdot \textbf{w}_i
|
|
! \end{align*}
|
|
|
|
|
|
! Initialisation
|
|
x = 0d0
|
|
|
|
! Calculation of the step x
|
|
|
|
! Normal version
|
|
if (.not. absolute_eig) then
|
|
|
|
do i = 1, n
|
|
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
|
|
do j = 1, n
|
|
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda)
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
! Version to use the absolute value of the eigenvalues
|
|
else
|
|
|
|
do i = 1, n
|
|
if (DABS(e_val(i)) > thresh_eig) then
|
|
do j = 1, n
|
|
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda)
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
endif
|
|
|
|
double precision :: beta, norm_x
|
|
|
|
! Test
|
|
! If w_1^T.g = 0, the lim of ||x(lambda)|| when lambda tend to -e_val(1)
|
|
! is not + infinity. So ||x(lambda=-e_val(1))|| < delta, we add the first
|
|
! eigenvectors multiply by a constant to ensure the condition
|
|
! ||x(lambda=-e_val(1))|| = delta and escape the saddle point
|
|
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
|
|
if (tmp_wtg(1) < 1d-15 .and. (1d0 - dsqrt(norm2_x)/delta) > 1d-3 ) then
|
|
|
|
! norm of x
|
|
norm_x = dnrm2(n,x,1)
|
|
|
|
! Computes the coefficient for the w_1
|
|
beta = delta**2 - norm_x**2
|
|
|
|
! Updates the step x
|
|
x = x + W(:,1) * dsqrt(beta)
|
|
|
|
! Recomputes the norm to check
|
|
norm_x = dnrm2(n,x,1)
|
|
|
|
print*, 'Add w_1 * dsqrt(delta^2 - ||x||^2):'
|
|
print*, '||x||', norm_x
|
|
endif
|
|
endif
|
|
|
|
! Transformation of x
|
|
|
|
! x is a vector of size n, so it can be write as a m by m
|
|
! antisymmetric matrix m_x cf. "mat_to_vec_index" and "vec_to_mat_index".
|
|
|
|
|
|
! ! Step transformation vector -> matrix
|
|
! ! Vector with n element -> mo_num by mo_num matrix
|
|
! do j = 1, m
|
|
! do i = 1, m
|
|
! if (i>j) then
|
|
! call mat_to_vec_index(i,j,k)
|
|
! m_x(i,j) = x(k)
|
|
! else
|
|
! m_x(i,j) = 0d0
|
|
! endif
|
|
! enddo
|
|
! enddo
|
|
!
|
|
! ! Antisymmetrization of the previous matrix
|
|
! do j = 1, m
|
|
! do i = 1, m
|
|
! if (i<j) then
|
|
! m_x(i,j) = - m_x(j,i)
|
|
! endif
|
|
! enddo
|
|
! enddo
|
|
|
|
! Deallocation, end
|
|
|
|
|
|
deallocate(tmp_wtg)
|
|
|
|
call wall_time(t2)
|
|
t3 = t2 - t1
|
|
print*,'Time in trust_region:', t3
|
|
print*,'======================'
|
|
print*,'---End trust_region---'
|
|
print*,'======================'
|
|
print*,''
|
|
|
|
end
|