9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-07 22:13:38 +01:00
qp2/src/utils_trust_region/algo_trust.org
Anthony Scemama d84092a29d
Some checks failed
continuous-integration/drone/push Build is failing
Added utils_trust_region directory
2023-02-08 16:45:04 +01:00

19 KiB

Algorithm for the trust region

step_in_trust_region: Computes the step in the trust region (delta) (automatically sets at the iteration 0 and which evolves during the process in function of the evolution of rho). The step is computing by constraining its norm with a lagrange multiplier. Since the calculation of the step is based on the Newton method, an estimation of the gain in energy is given using the Taylors series truncated at the second order (criterion_model). If (DABS(criterion-criterion_model) < 1d-12) then must_exit = .True. else must_exit = .False.

This estimation of the gain in energy is used by is_step_cancel_trust_region to say if the step is accepted or cancelled.

If the step must be cancelled, the calculation restart from the same hessian and gradient and recomputes the step but in a smaller trust region and so on until the step is accepted. If the step is accepted the hessian and the gradient are recomputed to produce a new step.

Example:

!  !### Initialization ###
!  delta = 0d0
!  nb_iter = 0 ! Must start at 0 !!!
!  rho = 0.5d0
!  not_converged = .True.
!
!  ! ### TODO ###
!  ! Compute the criterion before the loop
!  call #your_criterion(prev_criterion)
!
!  do while (not_converged)
!    ! ### TODO ## 
!    ! Call your gradient
!    ! Call you hessian
!    call #your_gradient(v_grad) (1D array)
!    call #your_hessian(H) (2D array) 
!
!    ! ### TODO ###
!    ! Diagonalization of the hessian 
!    call diagonalization_hessian(n,H,e_val,w)
!
!    cancel_step = .True. ! To enter in the loop just after 
!    ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
!    do while (cancel_step)
!
!      ! Hessian,gradient,Criterion -> x 
!      call trust_region_step_w_expected_e(tmp_n,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
!
!      if (must_exit) then
!        ! ### Message ###
!        ! if step_in_trust_region sets must_exit on true for numerical reasons
!        print*,'algo_trust1 sends the message : Exit'
!        !### exit ###
!      endif
!
!      !### TODO ###  
!      ! Compute x -> m_x
!      ! Compute m_x -> R
!      ! Apply R and keep the previous MOs...
!      ! Update/touch 
!      ! Compute the new criterion/energy -> criterion
!
!      call #your_routine_1D_to_2D_antisymmetric_array(x,m_x)
!      call #your_routine_2D_antisymmetric_array_to_rotation_matrix(m_x,R)
!      call #your_routine_to_apply_the_rotation_matrix(R,prev_mos)
!
!      TOUCH #your_variables
!      
!      call #your_criterion(criterion)
!
!      ! Criterion -> step accepted or rejected 
!      call trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
!
!      ! ### TODO ###
!      !if (cancel_step) then
!      ! Cancel the previous step (mo_coef = prev_mos if you keep them...)
!      !endif
!      #if (cancel_step) then
!        #mo_coef = prev_mos
!      #endif
!
!    enddo
!
!    !call save_mos() !### depend of the time for 1 iteration
!
!    ! To exit the external loop if must_exit = .True.
!    if (must_exit) then
!      !### exit ###
!    endif 
!
!    ! Step accepted, nb iteration + 1
!    nb_iter = nb_iter + 1
!
!    ! ### TODO ###
!    !if (###Conditions###) then
!    ! no_converged = .False.
!    !endif
!    #if (#your_conditions) then
!    #  not_converged = .False.
!    #endif
!
!  enddo

Variables:

Input:

n integer m*(m-1)/2
m integer number of mo in the mo_class
H(n,n) double precision Hessian
v_grad(n) double precision Gradient
W(n,n) double precision Eigenvectors of the hessian
e_val(n) double precision Eigenvalues of the hessian
criterion double precision Actual criterion
prev_criterion double precision Value of the criterion before the first iteration/after the previous iteration
rho double precision Given by is_step_cancel_trus_region
Agreement between the real function and the Taylor series (2nd order)
nb_iter integer Actual number of iterations

Input/output:

delta double precision Radius of the trust region

Output:

criterion_model double precision Predicted criterion after the rotation
x(n) double precision Step
must_exit logical If the program must exit the loop
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)

  include 'pi.h'

  BEGIN_DOC
  ! Compute the step and the expected criterion/energy after the step
  END_DOC

  implicit none

  ! in
  integer, intent(in)             :: n, nb_iter
  double precision, intent(in)    :: H(n,n), W(n,n), v_grad(n)
  double precision, intent(in)    :: rho, prev_criterion

  ! inout
  double precision, intent(inout) :: delta, e_val(n)

  ! out
  double precision, intent(out)   :: criterion_model, x(n)
  logical, intent(out)            :: must_exit

  ! internal
  integer :: info

  must_exit = .False.
  
  call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta)

  call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model)

  ! exit if DABS(prev_criterion - criterion_model) < 1d-12
  if (DABS(prev_criterion - criterion_model) < thresh_model) then
    print*,''
    print*,'###############################################################################'
    print*,'DABS(prev_criterion - criterion_model) <', thresh_model, 'stop the trust region'
    print*,'###############################################################################'
    print*,''
    must_exit = .True.
  endif

  if (delta < thresh_delta) then
    print*,''
    print*,'##############################################'
    print*,'Delta <', thresh_delta, 'stop the trust region'
    print*,'##############################################'
    print*,''
    must_exit = .True.
  endif

  ! Add after the call to this subroutine, a statement:
  ! "if (must_exit) then
  !   exit
  ! endif"
  ! in order to exit the optimization loop

end subroutine

Variables:

Input:

nb_iter integer actual number of iterations
prev_criterion double precision criterion before the application of the step x
criterion double precision criterion after the application of the step x
criterion_model double precision predicted criterion after the application of x

Output:

rho double precision Agreement between the predicted criterion and the real new criterion
cancel_step logical If the step must be cancelled
subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)

  include 'pi.h'

  BEGIN_DOC
  ! Compute if the step should be cancelled
  END_DOC

  implicit none
 
  ! in
  double precision, intent(in)  :: prev_criterion, criterion, criterion_model
  
  ! inout
  integer, intent(inout)        :: nb_iter

  ! out
  logical, intent(out)          :: cancel_step
  double precision, intent(out) :: rho

  ! Computes rho
  call trust_region_rho(prev_criterion,criterion,criterion_model,rho)
  
  if (nb_iter == 0) then
    nb_iter = 1 ! in order to enable the change of delta if the first iteration is cancelled  
  endif

  ! If rho < thresh_rho -> give something in output to cancel the step
  if (rho >= thresh_rho) then !0.1d0) then
     ! The step is accepted
     cancel_step = .False.
  else
     ! The step is rejected
     cancel_step = .True.
     print*, '***********************'
     print*, 'Step cancel : rho <', thresh_rho
     print*, '***********************'
  endif
  
end subroutine

Template for MOs

subroutine algo_trust_template(tmp_n, tmp_list_size, tmp_list)

  implicit none

  ! Variables

  ! In
  integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)

  ! Out
  ! Rien ou un truc pour savoir si ça c'est bien passé
  
  ! Internal
  double precision, allocatable :: e_val(:), W(:,:), tmp_R(:,:), R(:,:), tmp_x(:), tmp_m_x(:,:)
  double precision, allocatable :: prev_mos(:,:)
  double precision              :: criterion, prev_criterion, criterion_model
  double precision              :: delta, rho
  logical                       :: not_converged, cancel_step, must_exit, enforce_step_cancellation
  integer                       :: nb_iter, info, nb_sub_iter
  integer                       :: i,j,tmp_i,tmp_j

  allocate(W(tmp_n, tmp_n),e_val(tmp_n),tmp_x(tmp_n),tmp_m_x(tmp_list_size, tmp_list_size))
  allocate(tmp_R(tmp_list_size, tmp_list_size), R(mo_num, mo_num))
  allocate(prev_mos(ao_num, mo_num))

  ! Provide the criterion, but unnecessary because it's done 
  ! automatically
  PROVIDE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER

  ! Initialization
  delta = 0d0 
  nb_iter = 0 ! Must start at 0 !!!
  rho = 0.5d0 ! Must start at 0.5 
  not_converged = .True. ! Must be true

  ! Compute the criterion before the loop
  prev_criterion = C_PROVIDER

  do while (not_converged)

      print*,''
      print*,'******************'
      print*,'Iteration', nb_iter
      print*,'******************'
      print*,''

      ! The new hessian and gradient are computed at the end of the previous iteration
      ! Diagonalization of the hessian 
      call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)

      cancel_step = .True. ! To enter in the loop just after
      nb_sub_iter = 0

      ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
      do while (cancel_step)

          print*,'-----------------------------'
          print*,'Iteration:', nb_iter
          print*,'Sub iteration:', nb_sub_iter
          print*,'-----------------------------'

          ! Hessian,gradient,Criterion -> x 
          call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
               prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)

          if (must_exit) then
              ! if step_in_trust_region sets must_exit on true for numerical reasons
              print*,'trust_region_step_w_expected_e sent the message : Exit'
              exit
          endif

          ! 1D tmp -> 2D tmp 
          call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)

          ! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
          call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, info, enforce_step_cancellation)

          if (enforce_step_cancellation) then
            print*, 'Forces the step cancellation, too large error in the rotation matrix'
            rho = 0d0
            cycle
          endif

          ! tmp_R to R, subspace to full space
          call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)

          ! Rotation of the MOs
          call apply_mo_rotation(R, prev_mos)

          ! touch mo_coef
          call clear_mo_map ! Only if you are using the bi-electronic integrals
          ! mo_coef becomes valid
          ! And avoid the recomputation of the providers which depend of mo_coef
          TOUCH mo_coef C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER

          ! To update the other parameters if needed
          call #update_parameters()

          ! To enforce the program to provide new criterion after the update
          ! of the parameters
          FREE C_PROVIDER
          PROVIDE C_PROVIDER
          criterion = C_PROVIDER

          ! Criterion -> step accepted or rejected 
          call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)

          ! Cancellation of the step ?
          if (cancel_step) then
              ! Replacement by the previous MOs
              mo_coef = prev_mos
              ! call save_mos() ! depends of the time for 1 iteration

              ! No need to clear_mo_map since we don't recompute the gradient and the hessian
              ! mo_coef becomes valid
              ! Avoid the recomputation of the providers which depend of mo_coef
              TOUCH mo_coef H_PROVIDER g_PROVIDER C_PROVIDER cc_PROVIDER
          else
              ! The step is accepted:
              ! criterion -> prev criterion

              ! The replacement "criterion -> prev criterion" is already done
              ! in trust_region_rho, so if the criterion does not have a reason
              ! to change, it will change nothing for the criterion and will 
              ! force the program to provide the new hessian, gradient and 
              ! convergence criterion for the next iteration.
              ! But in the case of orbital optimization we diagonalize the CI 
              ! matrix after the "FREE" statement, so the criterion will change
      
              FREE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
              PROVIDE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
              prev_criterion = C_PROVIDER
              
          endif      

          nb_sub_iter = nb_sub_iter + 1
      enddo

      ! call save_mos() ! depends of the time for 1 iteration

      ! To exit the external loop if must_exit = .True.
      if (must_exit) then
          exit
      endif 

      ! Step accepted, nb iteration + 1
      nb_iter = nb_iter + 1

      ! Provide the convergence criterion
      ! Provide the gradient and the hessian for the next iteration
      PROVIDE cc_PROVIDER

      ! To exit
      if (dabs(cc_PROVIDER) < thresh_opt_max_elem_grad) then
        not_converged = .False.
      endif

      if (nb_iter > optimization_max_nb_iter) then
        not_converged = .False.
      endif

      if (delta < thresh_delta) then
        not_converged = .False.
      endif

  enddo

  ! Save the final MOs
  call save_mos()

  ! Diagonalization of the hessian 
  ! (To see the eigenvalues at the end of the optimization)
  call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
  
  deallocate(e_val, W, tmp_R, R, tmp_x, prev_mos)

end

Cartesian version

subroutine algo_trust_cartesian_template(tmp_n)

  implicit none

  ! Variables

  ! In
  integer, intent(in) :: tmp_n
  
  ! Out
  ! Rien ou un truc pour savoir si ça c'est bien passé
  
  ! Internal
  double precision, allocatable :: e_val(:), W(:,:), tmp_x(:)
  double precision              :: criterion, prev_criterion, criterion_model
  double precision              :: delta, rho
  logical                       :: not_converged, cancel_step, must_exit
  integer                       :: nb_iter, nb_sub_iter
  integer                       :: i,j

  allocate(W(tmp_n, tmp_n),e_val(tmp_n),tmp_x(tmp_n))

  PROVIDE C_PROVIDER X_PROVIDER H_PROVIDER g_PROVIDER

  ! Initialization
  delta = 0d0 
  nb_iter = 0 ! Must start at 0 !!!
  rho = 0.5d0 ! Must start at 0.5 
  not_converged = .True. ! Must be true

  ! Compute the criterion before the loop
  prev_criterion = C_PROVIDER

  do while (not_converged)

      print*,''
      print*,'******************'
      print*,'Iteration', nb_iter
      print*,'******************'
      print*,''

      if (nb_iter > 0) then
        PROVIDE H_PROVIDER g_PROVIDER
      endif

      ! Diagonalization of the hessian 
      call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)

      cancel_step = .True. ! To enter in the loop just after
      nb_sub_iter = 0

      ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
      do while (cancel_step)

          print*,'-----------------------------'
          print*,'Iteration:', nb_iter
          print*,'Sub iteration:', nb_sub_iter
          print*,'-----------------------------'

          ! Hessian,gradient,Criterion -> x 
          call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
               prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)

          if (must_exit) then
              ! if step_in_trust_region sets must_exit on true for numerical reasons
              print*,'trust_region_step_w_expected_e sent the message : Exit'
              exit
          endif

          ! New coordinates, check the sign 
          X_PROVIDER = X_PROVIDER - tmp_x

          ! touch X_PROVIDER
          TOUCH X_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER 

          ! To update the other parameters if needed
          call #update_parameters()

          ! New criterion
          PROVIDE C_PROVIDER ! Unnecessary
          criterion = C_PROVIDER

          ! Criterion -> step accepted or rejected 
          call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)

          ! Cancel the previous step
          if (cancel_step) then
              ! Replacement by the previous coordinates, check the sign 
              X_PROVIDER = X_PROVIDER + tmp_x

              ! Avoid the recomputation of the hessian and the gradient
              TOUCH X_PROVIDER H_PROVIDER g_PROVIDER C_PROVIDER cc_PROVIDER
          endif      

          nb_sub_iter = nb_sub_iter + 1
      enddo

      ! To exit the external loop if must_exit = .True.
      if (must_exit) then
          exit
      endif 

      ! Step accepted, nb iteration + 1
      nb_iter = nb_iter + 1

      PROVIDE cc_PROVIDER

      ! To exit
      if (dabs(cc_PROVIDER) < thresh_opt_max_elem_grad) then
        not_converged = .False.
      endif

      if (nb_iter > optimization_max_nb_iter) then
        not_converged = .False.
      endif

      if (delta < thresh_delta) then
        not_converged = .False.
      endif

  enddo
  
 deallocate(e_val, W, tmp_x)

end

Script template

#!/bin/bash

your_file=

your_C_PROVIDER=
your_H_PROVIDER=
your_g_PROVIDER=
your_cc_PROVIDER=

sed "s/C_PROVIDER/$your_C_PROVIDER/g" trust_region_template_mos.txt > $your_file
sed -i "s/H_PROVIDER/$your_H_PROVIDER/g" $your_file
sed -i "s/g_PROVIDER/$your_g_PROVIDER/g" $your_file
sed -i "s/cc_PROVIDER/$your_cc_PROVIDER/g" $your_file
#!/bin/bash

your_file=

your_C_PROVIDER=
your_X_PROVIDER=
your_H_PROVIDER=
your_g_PROVIDER=
your_cc_PROVIDER=

sed "s/C_PROVIDER/$your_C_PROVIDER/g" trust_region_template_xyz.txt > $your_file
sed -i "s/X_PROVIDER/$your_X_PROVIDER/g" $your_file
sed -i "s/H_PROVIDER/$your_H_PROVIDER/g" $your_file
sed -i "s/g_PROVIDER/$your_g_PROVIDER/g" $your_file
sed -i "s/cc_PROVIDER/$your_cc_PROVIDER/g" $your_file