mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-03 20:13:43 +01:00
707 lines
21 KiB
Fortran
707 lines
21 KiB
Fortran
real*8 function logabsgamma(x)
|
|
implicit none
|
|
real*8, intent(in) :: x
|
|
logabsgamma = 1.d32 ! Avoid floating point exception
|
|
if (x>0.d0) then
|
|
logabsgamma = log(abs(gamma(x)))
|
|
endif
|
|
end function logabsgamma
|
|
|
|
BEGIN_PROVIDER [ integer, NSOMOMax]
|
|
&BEGIN_PROVIDER [ integer, NCSFMax]
|
|
&BEGIN_PROVIDER [ integer*8, NMO]
|
|
&BEGIN_PROVIDER [ integer, NBFMax]
|
|
&BEGIN_PROVIDER [ integer, n_CSF]
|
|
&BEGIN_PROVIDER [ integer, maxDetDimPerBF]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Documentation for NSOMOMax
|
|
! The maximum number of SOMOs for the current calculation.
|
|
! required for the calculation of prototype arrays.
|
|
END_DOC
|
|
NSOMOMax = min(elec_num, cfg_nsomo_max + 2)
|
|
! Note that here we need NSOMOMax + 2 sizes
|
|
NCSFMax = max(1,nint((binom(NSOMOMax,(NSOMOMax+1)/2)-binom(NSOMOMax,((NSOMOMax+1)/2)+1)))) ! TODO: NCSFs for MS=0
|
|
NBFMax = NCSFMax
|
|
maxDetDimPerBF = max(1,nint((binom(NSOMOMax,(NSOMOMax+1)/2))))
|
|
NMO = n_act_orb
|
|
integer i,j,k,l
|
|
integer startdet,enddet
|
|
integer ncfg,ncfgprev
|
|
integer NSOMO
|
|
integer dimcsfpercfg
|
|
integer detDimperBF
|
|
real*8 :: coeff, binom1, binom2
|
|
integer MS
|
|
integer ncfgpersomo
|
|
real*8, external :: logabsgamma
|
|
detDimperBF = 0
|
|
MS = elec_alpha_num-elec_beta_num
|
|
! number of cfgs = number of dets for 0 somos
|
|
n_CSF = 0
|
|
ncfgprev = cfg_seniority_index(0)
|
|
ncfgpersomo = ncfgprev
|
|
do i = iand(MS,1), NSOMOMax-2,2
|
|
if(cfg_seniority_index(i) .EQ. -1) then
|
|
cycle
|
|
endif
|
|
if(cfg_seniority_index(i+2) .EQ. -1) then
|
|
ncfgpersomo = N_configuration + 1
|
|
else
|
|
if(cfg_seniority_index(i+2) > ncfgpersomo) then
|
|
ncfgpersomo = cfg_seniority_index(i+2)
|
|
else
|
|
! l = i+k+2
|
|
! Loop over l with a constraint to ensure that l <= size(cfg_seniority_index,1)-1
|
|
! Old version commented just below
|
|
do l = min(size(cfg_seniority_index,1)-1, i+2), size(cfg_seniority_index,1)-1, 2
|
|
if (cfg_seniority_index(l) >= ncfgpersomo) then
|
|
ncfgpersomo = cfg_seniority_index(l)
|
|
endif
|
|
enddo
|
|
!k = 0
|
|
!if ((i+2+k) < size(cfg_seniority_index,1)) then
|
|
! do while(cfg_seniority_index(i+2+k) < ncfgpersomo)
|
|
! k = k + 2
|
|
! if ((i+2+k) >= size(cfg_seniority_index,1)) then
|
|
! exit
|
|
! endif
|
|
! ncfgpersomo = cfg_seniority_index(i+2+k)
|
|
! enddo
|
|
!endif
|
|
endif
|
|
endif
|
|
ncfg = ncfgpersomo - ncfgprev
|
|
if(i .EQ. 0 .OR. i .EQ. 1) then
|
|
dimcsfpercfg = 1
|
|
elseif( i .EQ. 3) then
|
|
dimcsfpercfg = 2
|
|
else
|
|
if(iand(MS,1) .EQ. 0) then
|
|
dimcsfpercfg = max(1,nint((binom(i,i/2)-binom(i,i/2+1))))
|
|
else
|
|
dimcsfpercfg = max(1,nint((binom(i,(i+1)/2)-binom(i,(i+3)/2))))
|
|
endif
|
|
endif
|
|
n_CSF += ncfg * dimcsfpercfg
|
|
if(cfg_seniority_index(i+2) > ncfgprev) then
|
|
ncfgprev = cfg_seniority_index(i+2)
|
|
else
|
|
! l = i+k+2
|
|
! Loop over l with a constraint to ensure that l <= size(cfg_seniority_index,1)-1
|
|
! Old version commented just below
|
|
do l = min(size(cfg_seniority_index,1)-1, i+2), size(cfg_seniority_index,1)-1, 2
|
|
if (cfg_seniority_index(l) >= ncfgprev) then
|
|
ncfgprev = cfg_seniority_index(l)
|
|
endif
|
|
enddo
|
|
!k = 0
|
|
!if ((i+2+k) < size(cfg_seniority_index,1)) then
|
|
! do while(cfg_seniority_index(i+2+k) < ncfgprev)
|
|
! k = k + 2
|
|
! if ((i+2+k) >= size(cfg_seniority_index,1)) then
|
|
! exit
|
|
! endif
|
|
! ncfgprev = cfg_seniority_index(i+2+k)
|
|
! enddo
|
|
!endif
|
|
endif
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
|
|
subroutine get_phase_qp_to_cfg(Ialpha, Ibeta, phaseout)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Documentation for get_phase_qp_to_cfg
|
|
!
|
|
! This function converts from (aaaa)(bbbb)
|
|
! notation to (ab)(ab)(ab)(ab)
|
|
! notation.
|
|
! The cfgCI code works in (ab)(ab)(ab)(ab)
|
|
! notation throughout.
|
|
END_DOC
|
|
integer(bit_kind),intent(in) :: Ialpha(N_int)
|
|
integer(bit_kind),intent(in) :: Ibeta(N_int)
|
|
real*8,intent(out) :: phaseout
|
|
integer(bit_kind) :: mask, deta(N_int), detb(N_int)
|
|
integer :: nbetas
|
|
integer :: k
|
|
|
|
! Initialize deta and detb
|
|
deta = Ialpha
|
|
detb = Ibeta
|
|
|
|
! Find how many alpha electrons there are in all the N_ints
|
|
integer :: Na(N_int)
|
|
do k=1,N_int
|
|
Na(k) = popcnt(deta(k))
|
|
enddo
|
|
|
|
integer :: shift, ipos, nperm
|
|
phaseout = 1.d0
|
|
do k=1,N_int
|
|
|
|
do while(detb(k) /= 0_bit_kind)
|
|
! Find the lowest beta electron and clear it
|
|
ipos = trailz(detb(k))
|
|
detb(k) = ibclr(detb(k),ipos)
|
|
|
|
! Create a mask will all MOs higher than the beta electron
|
|
mask = not(shiftl(1_bit_kind,ipos + 1) - 1_bit_kind)
|
|
|
|
! Apply the mask to the alpha string to count how many electrons to cross
|
|
nperm = popcnt( iand(mask, deta(k)) )
|
|
|
|
! Count how many alpha electrons are above the beta electron in the other integers
|
|
nperm = nperm + sum(Na(k+1:N_int))
|
|
if (iand(nperm,1) == 1) then
|
|
phaseout = -phaseout
|
|
endif
|
|
|
|
enddo
|
|
|
|
enddo
|
|
end subroutine get_phase_qp_to_cfg
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ integer, AIJpqMatrixDimsList, (0:NSOMOMax,0:NSOMOMax,4,NSOMOMax,NSOMOMax,2)]
|
|
&BEGIN_PROVIDER [ integer, rowsmax]
|
|
&BEGIN_PROVIDER [ integer, colsmax]
|
|
use cfunctions
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Documentation for AIJpqMatrixList
|
|
! The prototype matrix containing the <I|E_{pq}|J>
|
|
! matrices for each I,J somo pair and orb ids.
|
|
END_DOC
|
|
integer i,j,k,l
|
|
integer*8 Isomo, Jsomo, tmpsomo
|
|
Isomo = 0
|
|
Jsomo = 0
|
|
integer rows, cols, nsomoi, nsomoj
|
|
rows = -1
|
|
cols = -1
|
|
integer*8 MS
|
|
MS = elec_alpha_num-elec_beta_num
|
|
integer nsomomin
|
|
nsomomin = elec_alpha_num-elec_beta_num
|
|
rowsmax = 0
|
|
colsmax = 0
|
|
!allocate(AIJpqMatrixDimsList(NSOMOMax,NSOMOMax,4,NSOMOMax,NSOMOMax,2))
|
|
! Type
|
|
! 1. SOMO -> SOMO
|
|
do i = 2-iand(nsomomin,1), NSOMOMax, 2
|
|
Isomo = ISHFT(1_8,i)-1
|
|
do j = i-2,i-2, 2
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
if(j .GT. NSOMOMax .OR. j .LT. 0) then
|
|
cycle
|
|
end if
|
|
do k = 1,i
|
|
do l = 1,i
|
|
! Define Jsomo
|
|
if(k.NE.l)then
|
|
Jsomo = IBCLR(Isomo, k-1)
|
|
Jsomo = IBCLR(Jsomo, l-1)
|
|
nsomoi = i
|
|
nsomoj = j
|
|
else
|
|
Isomo = ISHFT(1_8,i)-1
|
|
Jsomo = ISHFT(1_8,i)-1
|
|
nsomoi = i
|
|
nsomoj = i
|
|
endif
|
|
|
|
call getApqIJMatrixDims(Isomo, &
|
|
Jsomo, &
|
|
MS, &
|
|
rows, &
|
|
cols)
|
|
if(rowsmax .LT. rows) then
|
|
rowsmax = rows
|
|
end if
|
|
if(colsmax .LT. cols) then
|
|
colsmax = cols
|
|
end if
|
|
! i -> j
|
|
AIJpqMatrixDimsList(nsomoi,nsomoj,1,k,l,1) = rows
|
|
AIJpqMatrixDimsList(nsomoi,nsomoj,1,k,l,2) = cols
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
! Type
|
|
! 2. DOMO -> VMO
|
|
do i = 0+iand(nsomomin,1), NSOMOMax, 2
|
|
Isomo = ISHFT(1_8,i)-1
|
|
tmpsomo = ISHFT(1_8,i+2)-1
|
|
do j = i+2,i+2, 2
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
if(j .GT. NSOMOMax .OR. j .LT. 0) then
|
|
cycle
|
|
end if
|
|
do k = 1,j
|
|
do l = 1,j
|
|
if(k .NE. l) then
|
|
Isomo = IBCLR(tmpsomo,k-1)
|
|
Isomo = IBCLR(Isomo,l-1)
|
|
|
|
! Define Jsomo
|
|
Jsomo = ISHFT(1_8,j)-1;
|
|
nsomoi = i
|
|
nsomoj = j
|
|
else
|
|
Isomo = ISHFT(1_8,j)-1
|
|
Isomo = IBCLR(Isomo,1-1)
|
|
Isomo = IBCLR(Isomo,j-1)
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
Isomo = ISHFT(1_8,j)-1
|
|
nsomoi = j
|
|
nsomoj = j
|
|
endif
|
|
|
|
call getApqIJMatrixDims(Isomo, &
|
|
Jsomo, &
|
|
MS, &
|
|
rows, &
|
|
cols)
|
|
if(rowsmax .LT. rows) then
|
|
rowsmax = rows
|
|
end if
|
|
if(colsmax .LT. cols) then
|
|
colsmax = cols
|
|
end if
|
|
! i -> j
|
|
AIJpqMatrixDimsList(nsomoi,nsomoj,2,k,l,1) = rows
|
|
AIJpqMatrixDimsList(nsomoi,nsomoj,2,k,l,2) = cols
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
! Type
|
|
! 3. SOMO -> VMO
|
|
!print *,"Doing SOMO->VMO"
|
|
do i = 2-iand(nsomomin,1), NSOMOMax, 2
|
|
Isomo = ISHFT(1_8,i)-1
|
|
do j = i,i, 2
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
if(j .GT. NSOMOMax .OR. j .LE. 0) then
|
|
cycle
|
|
end if
|
|
do k = 1,i
|
|
do l = 1,i
|
|
if(k .NE. l) then
|
|
Isomo = ISHFT(1_8,i+1)-1
|
|
Isomo = IBCLR(Isomo,l-1)
|
|
Jsomo = ISHFT(1_8,j+1)-1
|
|
Jsomo = IBCLR(Jsomo,k-1)
|
|
else
|
|
Isomo = ISHFT(1_8,i)-1
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
endif
|
|
call getApqIJMatrixDims(Isomo, &
|
|
Jsomo, &
|
|
MS, &
|
|
rows, &
|
|
cols)
|
|
if(rowsmax .LT. rows) then
|
|
rowsmax = rows
|
|
end if
|
|
if(colsmax .LT. cols) then
|
|
colsmax = cols
|
|
end if
|
|
! i -> j
|
|
AIJpqMatrixDimsList(i,j,3,k,l,1) = rows
|
|
AIJpqMatrixDimsList(i,j,3,k,l,2) = cols
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
! Type
|
|
! 4. DOMO -> VMO
|
|
!print *,"Doing DOMO->SOMO"
|
|
do i = 2-iand(nsomomin,1), NSOMOMax, 2
|
|
do j = i,i, 2
|
|
if(j .GT. NSOMOMax .OR. j .LE. 0) then
|
|
cycle
|
|
end if
|
|
do k = 1,i
|
|
do l = 1,i
|
|
if(k .NE. l) then
|
|
Isomo = ISHFT(1_8,i+1)-1
|
|
Isomo = IBCLR(Isomo,k+1-1)
|
|
Jsomo = ISHFT(1_8,j+1)-1
|
|
Jsomo = IBCLR(Jsomo,l-1)
|
|
else
|
|
Isomo = ISHFT(1_8,i)-1
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
endif
|
|
call getApqIJMatrixDims(Isomo, &
|
|
Jsomo, &
|
|
MS, &
|
|
rows, &
|
|
cols)
|
|
if(rowsmax .LT. rows) then
|
|
rowsmax = rows
|
|
end if
|
|
if(colsmax .LT. cols) then
|
|
colsmax = cols
|
|
end if
|
|
! i -> j
|
|
AIJpqMatrixDimsList(i,j,4,k,l,1) = rows
|
|
AIJpqMatrixDimsList(i,j,4,k,l,2) = cols
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ real*8, AIJpqContainer, (0:NSOMOMax,0:NSOMOMax,4,NSOMOMax,NSOMOMax,NBFMax,NBFMax)]
|
|
use cfunctions
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Documentation for AIJpqMatrixList
|
|
! The prototype matrix containing the <I|E_{pq}|J>
|
|
! matrices for each I,J somo pair and orb ids.
|
|
!
|
|
! Due to the different types of excitations which
|
|
! include DOMOs and VMOs two prototype DOMOs and two
|
|
! prototype VMOs are needed. Therefore
|
|
! the 4th and 5th dimensions are NSOMOMax+4 and NSOMOMax+4
|
|
! respectively.
|
|
!
|
|
! The type of excitations are ordered as follows:
|
|
! Type 1 - SOMO -> SOMO
|
|
! Type 2 - DOMO -> VMO
|
|
! Type 3 - SOMO -> VMO
|
|
! Type 4 - DOMO -> SOMO
|
|
END_DOC
|
|
integer i,j,k,l, orbp, orbq, ri, ci
|
|
orbp = 0
|
|
orbq = 0
|
|
integer*8 Isomo, Jsomo, tmpsomo
|
|
Isomo = 0
|
|
Jsomo = 0
|
|
integer rows, cols, nsomoi, nsomoj
|
|
rows = -1
|
|
cols = -1
|
|
integer*8 MS
|
|
MS = 0
|
|
touch AIJpqMatrixDimsList
|
|
real*8,dimension(:,:),allocatable :: meMatrix
|
|
integer maxdim
|
|
!maxdim = max(rowsmax,colsmax)
|
|
! allocate matrix
|
|
!allocate(AIJpqMatrixDimsList(NSOMOMax,NSOMOMax,4,NSOMOMax,NSOMOMax,2))
|
|
! Type
|
|
! 1. SOMO -> SOMO
|
|
do i = 2, NSOMOMax, 2
|
|
Isomo = ISHFT(1_8,i)-1
|
|
do j = i-2,i-2, 2
|
|
if(j .GT. NSOMOMax .OR. j .LT. 0) cycle
|
|
do k = 1,i
|
|
do l = 1,i
|
|
|
|
! Define Jsomo
|
|
if(k .NE. l) then
|
|
Jsomo = IBCLR(Isomo, k-1)
|
|
Jsomo = IBCLR(Jsomo, l-1)
|
|
nsomoi = i
|
|
nsomoj = j
|
|
else
|
|
Isomo = ISHFT(1_8,i)-1
|
|
Jsomo = ISHFT(1_8,i)-1
|
|
nsomoi = i
|
|
nsomoj = i
|
|
endif
|
|
|
|
AIJpqContainer(nsomoi,nsomoj,1,k,l,:,:) = 0.0d0
|
|
call getApqIJMatrixDims(Isomo, &
|
|
Jsomo, &
|
|
MS, &
|
|
rows, &
|
|
cols)
|
|
|
|
orbp = k
|
|
orbq = l
|
|
allocate(meMatrix(rows,cols))
|
|
meMatrix = 0.0d0
|
|
! fill matrix
|
|
call getApqIJMatrixDriver(Isomo, &
|
|
Jsomo, &
|
|
orbp, &
|
|
orbq, &
|
|
MS, &
|
|
NMO, &
|
|
meMatrix, &
|
|
rows, &
|
|
cols)
|
|
! i -> j
|
|
do ri = 1,rows
|
|
do ci = 1,cols
|
|
AIJpqContainer(nsomoi,nsomoj,1,k,l,ri,ci) = meMatrix(ri, ci)
|
|
end do
|
|
end do
|
|
deallocate(meMatrix)
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
! Type
|
|
! 2. DOMO -> VMO
|
|
do i = 0, NSOMOMax, 2
|
|
Isomo = ISHFT(1_8,i)-1
|
|
tmpsomo = ISHFT(1_8,i+2)-1
|
|
do j = i+2,i+2, 2
|
|
if(j .GT. NSOMOMax .OR. j .LE. 0) cycle
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
do k = 1,j
|
|
do l = 1,j
|
|
if(k .NE. l) then
|
|
Isomo = IBCLR(tmpsomo,k-1)
|
|
Isomo = IBCLR(Isomo,l-1)
|
|
! Define Jsomo
|
|
Jsomo = ISHFT(1_8,j)-1;
|
|
nsomoi = i
|
|
nsomoj = j
|
|
else
|
|
Isomo = ISHFT(1_8,j)-1
|
|
Isomo = IBCLR(Isomo,1-1)
|
|
Isomo = IBCLR(Isomo,j-1)
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
Isomo = ISHFT(1_8,j)-1
|
|
nsomoi = j
|
|
nsomoj = j
|
|
endif
|
|
|
|
AIJpqContainer(nsomoi,nsomoj,2,k,l,:,:) = 0.0d0
|
|
call getApqIJMatrixDims(Isomo, &
|
|
Jsomo, &
|
|
MS, &
|
|
rows, &
|
|
cols)
|
|
|
|
orbp = k
|
|
orbq = l
|
|
allocate(meMatrix(rows,cols))
|
|
meMatrix = 0.0d0
|
|
! fill matrix
|
|
call getApqIJMatrixDriver(Isomo, &
|
|
Jsomo, &
|
|
orbp, &
|
|
orbq, &
|
|
MS, &
|
|
NMO, &
|
|
meMatrix, &
|
|
rows, &
|
|
cols)
|
|
! i -> j
|
|
do ri = 1,rows
|
|
do ci = 1,cols
|
|
AIJpqContainer(nsomoi,nsomoj,2,k,l,ri,ci) = meMatrix(ri, ci)
|
|
end do
|
|
end do
|
|
deallocate(meMatrix)
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
! Type
|
|
! 3. SOMO -> VMO
|
|
do i = 2, NSOMOMax, 2
|
|
Isomo = ISHFT(1_8,i)-1
|
|
do j = i,i, 2
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
if(j .GT. NSOMOMax .OR. j .LE. 0) cycle
|
|
do k = 1,i
|
|
do l = 1,i
|
|
if(k .NE. l) then
|
|
Isomo = ISHFT(1_8,i+1)-1
|
|
Isomo = IBCLR(Isomo,l-1)
|
|
Jsomo = ISHFT(1_8,j+1)-1
|
|
Jsomo = IBCLR(Jsomo,k-1)
|
|
else
|
|
Isomo = ISHFT(1_8,i)-1
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
endif
|
|
|
|
AIJpqContainer(i,j,3,k,l,:,:) = 0.0d0
|
|
call getApqIJMatrixDims(Isomo, &
|
|
Jsomo, &
|
|
MS, &
|
|
rows, &
|
|
cols)
|
|
|
|
orbp = k
|
|
orbq = l
|
|
allocate(meMatrix(rows,cols))
|
|
meMatrix = 0.0d0
|
|
! fill matrix
|
|
call getApqIJMatrixDriver(Isomo, &
|
|
Jsomo, &
|
|
orbp, &
|
|
orbq, &
|
|
MS, &
|
|
NMO, &
|
|
meMatrix, &
|
|
rows, &
|
|
cols)
|
|
! i -> j
|
|
do ri = 1,rows
|
|
do ci = 1,cols
|
|
AIJpqContainer(i,j,3,k,l,ri,ci) = meMatrix(ri, ci)
|
|
end do
|
|
end do
|
|
deallocate(meMatrix)
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
! Type
|
|
! 4. DOMO -> SOMO
|
|
do i = 2, NSOMOMax, 2
|
|
Isomo = ISHFT(1_8,i)-1
|
|
do j = i,i, 2
|
|
Jsomo = ISHFT(1_8,i)-1
|
|
if(j .GT. NSOMOMax .OR. j .LE. 0) cycle
|
|
do k = 1,i
|
|
do l = 1,i
|
|
if(k .NE. l) then
|
|
Isomo = ISHFT(1_8,i+1)-1
|
|
Isomo = IBCLR(Isomo,k-1)
|
|
Jsomo = ISHFT(1_8,j+1)-1
|
|
Jsomo = IBCLR(Jsomo,l+1-1)
|
|
else
|
|
Isomo = ISHFT(1_8,i)-1
|
|
Jsomo = ISHFT(1_8,j)-1
|
|
endif
|
|
|
|
AIJpqContainer(i,j,4,k,l,:,:) = 0.0d0
|
|
call getApqIJMatrixDims(Isomo, &
|
|
Jsomo, &
|
|
MS, &
|
|
rows, &
|
|
cols)
|
|
|
|
orbp = k
|
|
orbq = l
|
|
|
|
allocate(meMatrix(rows,cols))
|
|
meMatrix = 0.0d0
|
|
! fill matrix
|
|
call getApqIJMatrixDriver(Isomo, &
|
|
Jsomo, &
|
|
orbp, &
|
|
orbq, &
|
|
MS, &
|
|
NMO, &
|
|
meMatrix, &
|
|
rows, &
|
|
cols)
|
|
! i -> j
|
|
do ri = 1,rows
|
|
do ci = 1,cols
|
|
AIJpqContainer(i,j,4,k,l,ri,ci) = meMatrix(ri, ci)
|
|
end do
|
|
end do
|
|
deallocate(meMatrix)
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
END_PROVIDER
|
|
|
|
|
|
!!!!!!
|
|
|
|
BEGIN_PROVIDER [ real*8, DetToCSFTransformationMatrix, (0:NSOMOMax,NBFMax,maxDetDimPerBF)]
|
|
&BEGIN_PROVIDER [ real*8, psi_coef_config, (n_CSF)]
|
|
&BEGIN_PROVIDER [ integer, psi_config_data, (N_configuration,2)]
|
|
use cfunctions
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Documentation for DetToCSFTransformationMatrix
|
|
! Provides the matrix of transformatons for the
|
|
! conversion between determinant to CSF basis (in BFs)
|
|
END_DOC
|
|
integer(bit_kind) :: mask(N_int), Ialpha(N_int),Ibeta(N_int)
|
|
integer :: rows, cols, i, j, k
|
|
integer :: startdet, enddet
|
|
integer*8 MS, Isomo, Idomo
|
|
integer ndetI
|
|
integer :: getNSOMO
|
|
real*8,dimension(:,:),allocatable :: tempBuffer
|
|
real*8,dimension(:),allocatable :: tempCoeff
|
|
real*8 :: norm_det1, phasedet
|
|
norm_det1 = 0.d0
|
|
MS = elec_alpha_num - elec_beta_num
|
|
! initialization
|
|
psi_coef_config = 0.d0
|
|
DetToCSFTransformationMatrix(0,:,:) = 1.d0
|
|
do i = 2-iand(elec_alpha_num-elec_beta_num,1), NSOMOMax,2
|
|
Isomo = IBSET(0_8, i) - 1_8
|
|
! rows = Ncsfs
|
|
! cols = Ndets
|
|
bfIcfg = max(1,nint((binom(i,(i+1)/2)-binom(i,((i+1)/2)+1))))
|
|
ndetI = max(1,nint((binom(i,(i+1)/2))))
|
|
|
|
allocate(tempBuffer(bfIcfg,ndetI))
|
|
call getCSFtoDETTransformationMatrix(Isomo, MS, NBFMax, maxDetDimPerBF, tempBuffer)
|
|
DetToCSFTransformationMatrix(i,1:bfIcfg,1:ndetI) = tempBuffer(1:bfIcfg,1:ndetI)
|
|
deallocate(tempBuffer)
|
|
enddo
|
|
|
|
integer s, bfIcfg
|
|
integer countcsf
|
|
countcsf = 0
|
|
integer countdet
|
|
countdet = 0
|
|
integer idx
|
|
integer istate
|
|
istate = 1
|
|
phasedet = 1.0d0
|
|
do i = 1,N_configuration
|
|
startdet = psi_configuration_to_psi_det(1,i)
|
|
enddet = psi_configuration_to_psi_det(2,i)
|
|
ndetI = enddet-startdet+1
|
|
|
|
allocate(tempCoeff(ndetI))
|
|
countdet = 1
|
|
do j = startdet, enddet
|
|
idx = psi_configuration_to_psi_det_data(j)
|
|
Ialpha(:) = psi_det(:,1,idx)
|
|
Ibeta(:) = psi_det(:,2,idx)
|
|
call get_phase_qp_to_cfg(Ialpha, Ibeta, phasedet)
|
|
tempCoeff(countdet) = psi_coef(idx, istate)*phasedet
|
|
norm_det1 += tempCoeff(countdet)*tempCoeff(countdet)
|
|
countdet += 1
|
|
enddo
|
|
|
|
s = 0
|
|
do k=1,N_int
|
|
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
|
|
s = s + popcnt(psi_configuration(k,1,i))
|
|
enddo
|
|
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
|
|
|
|
! perhaps blocking with CFGs of same seniority
|
|
! can be more efficient
|
|
allocate(tempBuffer(bfIcfg,ndetI))
|
|
tempBuffer = DetToCSFTransformationMatrix(s,:bfIcfg,:ndetI)
|
|
|
|
call dgemm('N','N', bfIcfg, 1, ndetI, 1.d0, tempBuffer, size(tempBuffer,1), tempCoeff, size(tempCoeff,1), 0.d0, psi_coef_config(countcsf+1), size(psi_coef_config,1))
|
|
!call dgemv('N', NBFMax, maxDetDimPerBF, 1.d0, tempBuffer, size(tempBuffer,1), tempCoeff, 1, 0.d0, psi_coef_config(countcsf), 1)
|
|
|
|
deallocate(tempCoeff)
|
|
deallocate(tempBuffer)
|
|
psi_config_data(i,1) = countcsf + 1
|
|
countcsf += bfIcfg
|
|
psi_config_data(i,2) = countcsf
|
|
enddo
|
|
|
|
END_PROVIDER
|