9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-04 04:23:39 +01:00
qp2/src/bi_ort_ints/total_twoe_pot.irp.f
2023-03-04 02:31:04 +01:00

272 lines
6.7 KiB
Fortran

! ---
BEGIN_PROVIDER [double precision, ao_two_e_vartc_tot, (ao_num, ao_num, ao_num, ao_num) ]
integer :: i, j, k, l
provide j1b_type
provide mo_r_coef mo_l_coef
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
ao_two_e_vartc_tot(k,i,l,j) = ao_vartc_int_chemist(k,i,l,j)
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_num) ]
BEGIN_DOC
!
! ao_two_e_tc_tot(k,i,l,j) = (ki|V^TC(r_12)|lj) = <lk| V^TC(r_12) |ji> where V^TC(r_12) is the total TC operator
!
! including both hermitian and non hermitian parts. THIS IS IN CHEMIST NOTATION.
!
! WARNING :: non hermitian ! acts on "the right functions" (i,j)
!
END_DOC
integer :: i, j, k, l
double precision :: integral_sym, integral_nsym
double precision, external :: get_ao_tc_sym_two_e_pot
provide j1b_type
if(j1b_type .eq. 3) then
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
ao_two_e_tc_tot(k,i,l,j) = ao_tc_int_chemist(k,i,l,j)
!write(222,*) ao_two_e_tc_tot(k,i,l,j)
enddo
enddo
enddo
enddo
else
PROVIDE ao_tc_sym_two_e_pot_in_map
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
integral_sym = get_ao_tc_sym_two_e_pot(i, j, k, l, ao_tc_sym_two_e_pot_map)
! ao_non_hermit_term_chemist(k,i,l,j) = < k l | [erf( mu r12) - 1] d/d_r12 | i j > on the AO basis
integral_nsym = ao_non_hermit_term_chemist(k,i,l,j)
!print *, ' sym integ = ', integral_sym
!print *, ' non-sym integ = ', integral_nsym
ao_two_e_tc_tot(k,i,l,j) = integral_sym + integral_nsym
!write(111,*) ao_two_e_tc_tot(k,i,l,j)
enddo
enddo
enddo
enddo
endif
END_PROVIDER
! ---
double precision function bi_ortho_mo_ints(l, k, j, i)
BEGIN_DOC
!
! <mo^L_k mo^L_l | V^TC(r_12) | mo^R_i mo^R_j>
!
! WARNING :: very naive, super slow, only used to DEBUG.
!
END_DOC
implicit none
integer, intent(in) :: i, j, k, l
integer :: m, n, p, q
bi_ortho_mo_ints = 0.d0
do m = 1, ao_num
do p = 1, ao_num
do n = 1, ao_num
do q = 1, ao_num
! p1h1p2h2 l1 l2 r1 r2
bi_ortho_mo_ints += ao_two_e_tc_tot(n,q,m,p) * mo_l_coef(m,l) * mo_l_coef(n,k) * mo_r_coef(p,j) * mo_r_coef(q,i)
enddo
enddo
enddo
enddo
end function bi_ortho_mo_ints
! ---
! TODO :: transform into DEGEMM
BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e_chemist, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! mo_bi_ortho_tc_two_e_chemist(k,i,l,j) = <k l|V(r_12)|i j> where i,j are right MOs and k,l are left MOs
!
END_DOC
implicit none
integer :: i, j, k, l, m, n, p, q
double precision, allocatable :: mo_tmp_1(:,:,:,:), mo_tmp_2(:,:,:,:)
allocate(mo_tmp_1(mo_num,ao_num,ao_num,ao_num))
mo_tmp_1 = 0.d0
do m = 1, ao_num
do p = 1, ao_num
do n = 1, ao_num
do q = 1, ao_num
do k = 1, mo_num
! (k n|p m) = sum_q c_qk * (q n|p m)
mo_tmp_1(k,n,p,m) += mo_l_coef_transp(k,q) * ao_two_e_tc_tot(q,n,p,m)
enddo
enddo
enddo
enddo
enddo
allocate(mo_tmp_2(mo_num,mo_num,ao_num,ao_num))
mo_tmp_2 = 0.d0
do m = 1, ao_num
do p = 1, ao_num
do n = 1, ao_num
do i = 1, mo_num
do k = 1, mo_num
! (k i|p m) = sum_n c_ni * (k n|p m)
mo_tmp_2(k,i,p,m) += mo_r_coef_transp(i,n) * mo_tmp_1(k,n,p,m)
enddo
enddo
enddo
enddo
enddo
deallocate(mo_tmp_1)
allocate(mo_tmp_1(mo_num,mo_num,mo_num,ao_num))
mo_tmp_1 = 0.d0
do m = 1, ao_num
do p = 1, ao_num
do l = 1, mo_num
do i = 1, mo_num
do k = 1, mo_num
mo_tmp_1(k,i,l,m) += mo_l_coef_transp(l,p) * mo_tmp_2(k,i,p,m)
enddo
enddo
enddo
enddo
enddo
deallocate(mo_tmp_2)
mo_bi_ortho_tc_two_e_chemist = 0.d0
do m = 1, ao_num
do j = 1, mo_num
do l = 1, mo_num
do i = 1, mo_num
do k = 1, mo_num
mo_bi_ortho_tc_two_e_chemist(k,i,l,j) += mo_r_coef_transp(j,m) * mo_tmp_1(k,i,l,m)
enddo
enddo
enddo
enddo
enddo
deallocate(mo_tmp_1)
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! mo_bi_ortho_tc_two_e(k,l,i,j) = <k l| V(r_12) |i j> where i,j are right MOs and k,l are left MOs
!
! the potential V(r_12) contains ALL TWO-E CONTRIBUTION OF THE TC-HAMILTONIAN
!
END_DOC
implicit none
integer :: i, j, k, l
do j = 1, mo_num
do i = 1, mo_num
do l = 1, mo_num
do k = 1, mo_num
! < k l | V12 | i j > (k i|l j)
mo_bi_ortho_tc_two_e(k,l,i,j) = mo_bi_ortho_tc_two_e_chemist(k,i,l,j)
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj, (mo_num,mo_num) ]
&BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_exchange, (mo_num,mo_num) ]
&BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_anti, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! mo_bi_ortho_tc_two_e_jj(i,j) = J_ij = <ji|W-K|ji>
! mo_bi_ortho_tc_two_e_jj_exchange(i,j) = K_ij = <ij|W-K|ji>
! mo_bi_ortho_tc_two_e_jj_anti(i,j) = J_ij - K_ij
END_DOC
integer :: i,j
double precision :: get_two_e_integral
mo_bi_ortho_tc_two_e_jj = 0.d0
mo_bi_ortho_tc_two_e_jj_exchange = 0.d0
do i=1,mo_num
do j=1,mo_num
mo_bi_ortho_tc_two_e_jj(i,j) = mo_bi_ortho_tc_two_e(j,i,j,i)
mo_bi_ortho_tc_two_e_jj_exchange(i,j) = mo_bi_ortho_tc_two_e(i,j,j,i)
mo_bi_ortho_tc_two_e_jj_anti(i,j) = mo_bi_ortho_tc_two_e_jj(i,j) - mo_bi_ortho_tc_two_e_jj_exchange(i,j)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_2e_3idx_coulomb_integrals, (mo_num,mo_num, mo_num)]
&BEGIN_PROVIDER [double precision, tc_2e_3idx_exchange_integrals,(mo_num,mo_num, mo_num)]
implicit none
BEGIN_DOC
! tc_2e_3idx_coulomb_integrals(j,k,i) = <jk|ji>
!
! tc_2e_3idx_exchange_integrals(j,k,i) = <kj|ji>
END_DOC
integer :: i,j,k,l
double precision :: get_two_e_integral
double precision :: integral
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
tc_2e_3idx_coulomb_integrals(j, k,i) = mo_bi_ortho_tc_two_e(j ,k ,j ,i )
tc_2e_3idx_exchange_integrals(j,k,i) = mo_bi_ortho_tc_two_e(k ,j ,j ,i )
enddo
enddo
enddo
END_PROVIDER