9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-06 05:23:37 +01:00
qp2/src/bi_ort_ints/three_body_ijmkl.irp.f
2023-02-07 13:27:19 +01:00

297 lines
8.5 KiB
Fortran

! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_direct_bi_ort(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_direct_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_direct_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_1_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
do l = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch23_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch23_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch23_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch13_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch13_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch12_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch12_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch12_bi_ort', wall1 - wall0
END_PROVIDER
! ---