9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-18 19:32:20 +01:00
qp2/docs/source/modules/utils.rst

3028 lines
54 KiB
ReStructuredText

.. _module_utils:
.. program:: utils
.. default-role:: option
=====
utils
=====
Contains general purpose utilities (sorting, maps, etc).
Providers
---------
.. c:var:: binom
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision, allocatable :: binom (0:40,0:40)
double precision, allocatable :: binom_transp (0:40,0:40)
Binomial coefficients
Needed by:
.. hlist::
:columns: 3
* :c:data:`binom_int`
.. c:var:: binom_int
File : :file:`utils/util.irp.f`
.. code:: fortran
integer*8, allocatable :: binom_int (0:40,0:40)
integer*8, allocatable :: binom_int_transp (0:40,0:40)
Binomial coefficients, as integers*8
Needs:
.. hlist::
:columns: 3
* :c:data:`binom`
.. c:var:: binom_int_transp
File : :file:`utils/util.irp.f`
.. code:: fortran
integer*8, allocatable :: binom_int (0:40,0:40)
integer*8, allocatable :: binom_int_transp (0:40,0:40)
Binomial coefficients, as integers*8
Needs:
.. hlist::
:columns: 3
* :c:data:`binom`
.. c:var:: binom_transp
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision, allocatable :: binom (0:40,0:40)
double precision, allocatable :: binom_transp (0:40,0:40)
Binomial coefficients
Needed by:
.. hlist::
:columns: 3
* :c:data:`binom_int`
.. c:var:: degree_max_integration_lebedev
File : :file:`utils/angular_integration.irp.f`
.. code:: fortran
integer :: degree_max_integration_lebedev
integrate correctly a polynom of order "degree_max_integration_lebedev"
needed for the angular integration according to LEBEDEV formulae
Needed by:
.. hlist::
:columns: 3
* :c:data:`n_points_integration_angular_lebedev`
* :c:data:`theta_angular_integration_lebedev`
.. c:function:: dtranspose:
File : :file:`utils/transpose.irp.f`
.. code:: fortran
recursive subroutine dtranspose(A,LDA,B,LDB,d1,d2)
Transpose input matrix A into output matrix B
Called by:
.. hlist::
:columns: 3
* :c:func:`dtranspose`
* :c:func:`h_s2_u_0_nstates_openmp`
* :c:func:`h_s2_u_0_nstates_zmq`
* :c:func:`h_s2_u_0_two_e_nstates_openmp`
Calls:
.. hlist::
:columns: 3
* :c:func:`dtranspose`
.. c:var:: fact_inv
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision, allocatable :: fact_inv (128)
1/n!
.. c:function:: i2radix_sort:
File : :file:`utils/sort.irp.f_template_644`
.. code:: fortran
recursive subroutine i2radix_sort(x,iorder,isize,iradix)
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
Called by:
.. hlist::
:columns: 3
* :c:func:`get_mo_two_e_integrals_erf_i1j1`
* :c:func:`get_mo_two_e_integrals_erf_ij`
* :c:func:`get_mo_two_e_integrals_i1j1`
* :c:func:`get_mo_two_e_integrals_ij`
* :c:func:`i2radix_sort`
Calls:
.. hlist::
:columns: 3
* :c:func:`i2radix_sort`
* :c:func:`insertion_i2sort`
.. c:function:: i8radix_sort:
File : :file:`utils/sort.irp.f_template_644`
.. code:: fortran
recursive subroutine i8radix_sort(x,iorder,isize,iradix)
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
Called by:
.. hlist::
:columns: 3
* :c:func:`get_mo_two_e_integrals_erf_i1j1`
* :c:func:`get_mo_two_e_integrals_erf_ij`
* :c:func:`get_mo_two_e_integrals_i1j1`
* :c:func:`get_mo_two_e_integrals_ij`
* :c:func:`i8radix_sort`
* :c:data:`psi_bilinear_matrix_transp_values`
Calls:
.. hlist::
:columns: 3
* :c:func:`i8radix_sort`
* :c:func:`insertion_i8sort`
.. c:function:: i8radix_sort_big:
File : :file:`utils/sort.irp.f_template_644`
.. code:: fortran
recursive subroutine i8radix_sort_big(x,iorder,isize,iradix)
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
Called by:
.. hlist::
:columns: 3
* :c:func:`i8radix_sort_big`
Calls:
.. hlist::
:columns: 3
* :c:func:`i8radix_sort_big`
* :c:func:`insertion_i8sort_big`
.. c:var:: inv_int
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision, allocatable :: inv_int (128)
1/i
.. c:function:: iradix_sort:
File : :file:`utils/sort.irp.f_template_644`
.. code:: fortran
recursive subroutine iradix_sort(x,iorder,isize,iradix)
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
Called by:
.. hlist::
:columns: 3
* :c:func:`get_mo_two_e_integrals_erf_i1j1`
* :c:func:`get_mo_two_e_integrals_erf_ij`
* :c:func:`get_mo_two_e_integrals_i1j1`
* :c:func:`get_mo_two_e_integrals_ij`
* :c:func:`iradix_sort`
Calls:
.. hlist::
:columns: 3
* :c:func:`insertion_isort`
* :c:func:`iradix_sort`
.. c:function:: iradix_sort_big:
File : :file:`utils/sort.irp.f_template_644`
.. code:: fortran
recursive subroutine iradix_sort_big(x,iorder,isize,iradix)
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
Called by:
.. hlist::
:columns: 3
* :c:func:`iradix_sort_big`
Calls:
.. hlist::
:columns: 3
* :c:func:`insertion_isort_big`
* :c:func:`iradix_sort_big`
.. c:var:: n_points_integration_angular_lebedev
File : :file:`utils/angular_integration.irp.f`
.. code:: fortran
integer :: n_points_integration_angular_lebedev
Number of points needed for the angular integral
Needs:
.. hlist::
:columns: 3
* :c:data:`degree_max_integration_lebedev`
Needed by:
.. hlist::
:columns: 3
* :c:data:`theta_angular_integration_lebedev`
.. c:var:: nproc
File : :file:`utils/util.irp.f`
.. code:: fortran
integer :: nproc
Number of current OpenMP threads
Needed by:
.. hlist::
:columns: 3
* :c:data:`ao_two_e_integrals_erf_in_map`
* :c:data:`ao_two_e_integrals_in_map`
* :c:data:`h_apply_buffer_allocated`
* :c:data:`n_det`
* :c:data:`nthreads_davidson`
* :c:data:`nthreads_pt2`
.. c:function:: overlap_gaussian_xyz:
File : :file:`utils/one_e_integration.irp.f`
.. code:: fortran
subroutine overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,&
power_B,overlap_x,overlap_y,overlap_z,overlap,dim)
.. math::
S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\
S = S_x S_y S_z
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_coef_normalization_libint_factor`
* :c:data:`ao_coef_normalized`
* :c:data:`ao_deriv2_x`
* :c:data:`ao_deriv_1_x`
* :c:data:`ao_dipole_x`
* :c:data:`ao_overlap`
* :c:data:`ao_spread_x`
Calls:
.. hlist::
:columns: 3
* :c:func:`gaussian_product_x`
* :c:func:`give_explicit_poly_and_gaussian`
.. c:var:: phi_angular_integration_lebedev
File : :file:`utils/angular_integration.irp.f`
.. code:: fortran
double precision, allocatable :: theta_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: phi_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: weights_angular_integration_lebedev (n_points_integration_angular_lebedev)
Theta phi values together with the weights values for the angular integration :
integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi)
Note that theta and phi are in DEGREES !!
Needs:
.. hlist::
:columns: 3
* :c:data:`degree_max_integration_lebedev`
* :c:data:`n_points_integration_angular_lebedev`
.. c:var:: qp_max_mem
File : :file:`utils/memory.irp.f`
.. code:: fortran
integer :: qp_max_mem
Maximum memory in Gb
Needs:
.. hlist::
:columns: 3
* :c:data:`mpi_master`
Needed by:
.. hlist::
:columns: 3
* :c:data:`pt2_j`
* :c:data:`pt2_w`
.. c:function:: rec__quicksort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
recursive subroutine rec__quicksort(x, iorder, isize, first, last, level)
Called by:
.. hlist::
:columns: 3
* :c:func:`quick_sort`
* :c:func:`rec__quicksort`
Calls:
.. hlist::
:columns: 3
* :c:func:`rec__quicksort`
.. c:function:: rec_d_quicksort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
recursive subroutine rec_d_quicksort(x, iorder, isize, first, last, level)
Called by:
.. hlist::
:columns: 3
* :c:func:`quick_dsort`
* :c:func:`rec_d_quicksort`
Calls:
.. hlist::
:columns: 3
* :c:func:`rec_d_quicksort`
.. c:function:: rec_i2_quicksort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
recursive subroutine rec_i2_quicksort(x, iorder, isize, first, last, level)
Called by:
.. hlist::
:columns: 3
* :c:func:`quick_i2sort`
* :c:func:`rec_i2_quicksort`
Calls:
.. hlist::
:columns: 3
* :c:func:`rec_i2_quicksort`
.. c:function:: rec_i8_quicksort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
recursive subroutine rec_i8_quicksort(x, iorder, isize, first, last, level)
Called by:
.. hlist::
:columns: 3
* :c:func:`quick_i8sort`
* :c:func:`rec_i8_quicksort`
Calls:
.. hlist::
:columns: 3
* :c:func:`rec_i8_quicksort`
.. c:function:: rec_i_quicksort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
recursive subroutine rec_i_quicksort(x, iorder, isize, first, last, level)
Called by:
.. hlist::
:columns: 3
* :c:func:`quick_isort`
* :c:func:`rec_i_quicksort`
Calls:
.. hlist::
:columns: 3
* :c:func:`rec_i_quicksort`
.. c:var:: theta_angular_integration_lebedev
File : :file:`utils/angular_integration.irp.f`
.. code:: fortran
double precision, allocatable :: theta_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: phi_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: weights_angular_integration_lebedev (n_points_integration_angular_lebedev)
Theta phi values together with the weights values for the angular integration :
integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi)
Note that theta and phi are in DEGREES !!
Needs:
.. hlist::
:columns: 3
* :c:data:`degree_max_integration_lebedev`
* :c:data:`n_points_integration_angular_lebedev`
.. c:function:: transpose:
File : :file:`utils/transpose.irp.f`
.. code:: fortran
recursive subroutine transpose(A,LDA,B,LDB,d1,d2)
Transpose input matrix A into output matrix B
Called by:
.. hlist::
:columns: 3
* :c:func:`transpose`
Calls:
.. hlist::
:columns: 3
* :c:func:`transpose`
.. c:var:: weights_angular_integration_lebedev
File : :file:`utils/angular_integration.irp.f`
.. code:: fortran
double precision, allocatable :: theta_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: phi_angular_integration_lebedev (n_points_integration_angular_lebedev)
double precision, allocatable :: weights_angular_integration_lebedev (n_points_integration_angular_lebedev)
Theta phi values together with the weights values for the angular integration :
integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi)
Note that theta and phi are in DEGREES !!
Needs:
.. hlist::
:columns: 3
* :c:data:`degree_max_integration_lebedev`
* :c:data:`n_points_integration_angular_lebedev`
Subroutines / functions
-----------------------
.. c:function:: a_coef:
File : :file:`utils/need.irp.f`
.. code:: fortran
double precision function a_coef(n)
.. c:function:: add_poly:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine add_poly(b,nb,c,nc,d,nd)
Add two polynomials
D(t) =! D(t) +( B(t)+C(t))
.. c:function:: add_poly_multiply:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine add_poly_multiply(b,nb,cst,d,nd)
Add a polynomial multiplied by a constant
D(t) =! D(t) +( cst * B(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`general_primitive_integral`
* :c:func:`general_primitive_integral_erf`
.. c:function:: apply_rotation:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine apply_rotation(A,LDA,R,LDR,B,LDB,m,n)
Apply the rotation found by find_rotation
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
.. c:function:: approx_dble:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function approx_dble(a,n)
.. c:function:: b_coef:
File : :file:`utils/need.irp.f`
.. code:: fortran
double precision function b_coef(n,u)
.. c:function:: binom_func:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function binom_func(i,j)
.. math ::
\frac{i!}{j!(i-j)!}
.. c:function:: check_mem:
File : :file:`utils/memory.irp.f`
.. code:: fortran
subroutine check_mem(rss_in,routine)
Checks if n gigabytes can be allocated. If not, exit the run.
Needs:
.. hlist::
:columns: 3
* :c:data:`qp_max_mem`
Called by:
.. hlist::
:columns: 3
* :c:func:`create_selection_buffer`
* :c:func:`davidson_diag_hjj_sjj`
* :c:func:`make_selection_buffer_s2`
* :c:func:`merge_selection_buffers`
* :c:func:`pt2_collector`
* :c:data:`pt2_j`
* :c:data:`pt2_w`
* :c:func:`remove_duplicates_in_selection_buffer`
* :c:func:`run_cipsi`
* :c:func:`run_slave_main`
* :c:func:`run_stochastic_cipsi`
* :c:func:`selection_collector`
* :c:func:`sort_selection_buffer`
* :c:func:`testteethbuilding`
* :c:func:`zmq_pt2`
Calls:
.. hlist::
:columns: 3
* :c:func:`resident_memory`
.. c:function:: dble_fact:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function dble_fact(n)
.. c:function:: dble_fact_even:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function dble_fact_even(n) result(fact2)
n!!
.. c:function:: dble_fact_odd:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function dble_fact_odd(n) result(fact2)
n!!
.. c:function:: dble_logfact:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function dble_logfact(n) result(logfact2)
n!!
.. c:function:: ddfact2:
File : :file:`utils/need.irp.f`
.. code:: fortran
double precision function ddfact2(n)
.. c:function:: dset_order:
File : :file:`utils/sort.irp.f_template_347`
.. code:: fortran
subroutine dset_order(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_coef_normalized_ordered`
* :c:func:`h_s2_u_0_nstates_openmp`
* :c:func:`h_s2_u_0_nstates_zmq`
* :c:func:`h_s2_u_0_two_e_nstates_openmp`
* :c:data:`psi_bilinear_matrix_transp_values`
* :c:data:`psi_bilinear_matrix_values`
.. c:function:: dset_order_big:
File : :file:`utils/sort.irp.f_template_412`
.. code:: fortran
subroutine dset_order_big(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: dsort:
File : :file:`utils/sort.irp.f_template_293`
.. code:: fortran
subroutine dsort(x,iorder,isize)
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_coef_normalized_ordered`
* :c:func:`make_selection_buffer_s2`
* :c:data:`psi_det_sorted`
* :c:func:`reorder_core_orb`
* :c:func:`sort_by_fock_energies`
* :c:func:`sort_selection_buffer`
Calls:
.. hlist::
:columns: 3
* :c:func:`insertion_dsort`
* :c:func:`quick_dsort`
.. c:function:: erf0:
File : :file:`utils/need.irp.f`
.. code:: fortran
double precision function erf0(x)
.. c:function:: extrapolate_data:
File : :file:`utils/extrapolation.irp.f`
.. code:: fortran
subroutine extrapolate_data(N_data, data, pt2, output)
Extrapolate the data to the FCI limit
Called by:
.. hlist::
:columns: 3
* :c:data:`extrapolated_energy`
Calls:
.. hlist::
:columns: 3
* :c:func:`get_pseudo_inverse`
.. c:function:: f_integral:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function F_integral(n,p)
function that calculates the following integral
\int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx
.. c:function:: fact:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function fact(n)
n!
.. c:function:: find_rotation:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine find_rotation(A,LDA,B,m,C,n)
Find A.C = B
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`get_pseudo_inverse`
.. c:function:: gammln:
File : :file:`utils/need.irp.f`
.. code:: fortran
double precision function gammln(xx)
.. c:function:: gammp:
File : :file:`utils/need.irp.f`
.. code:: fortran
double precision function gammp(a,x)
Calls:
.. hlist::
:columns: 3
* :c:func:`gcf`
* :c:func:`gser`
.. c:function:: gaussian_product:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine gaussian_product(a,xa,b,xb,k,p,xp)
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
Called by:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian`
* :c:func:`give_explicit_poly_and_gaussian_double`
.. c:function:: gaussian_product_x:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine gaussian_product_x(a,xa,b,xb,k,p,xp)
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
Called by:
.. hlist::
:columns: 3
* :c:func:`overlap_gaussian_xyz`
.. c:function:: gcf:
File : :file:`utils/need.irp.f`
.. code:: fortran
subroutine gcf(gammcf,a,x,gln)
Called by:
.. hlist::
:columns: 3
* :c:func:`gammp`
.. c:function:: get_inverse:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine get_inverse(A,LDA,m,C,LDC)
Returns the inverse of the square matrix A
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_ortho_canonical_coef_inv`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgetrf`
* :c:func:`dgetri`
.. c:function:: get_pseudo_inverse:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine get_pseudo_inverse(A,LDA,m,n,C,LDC)
Find C = A^-1
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_cart_to_sphe_inv`
* :c:func:`extrapolate_data`
* :c:func:`find_rotation`
* :c:data:`s_inv`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgesvd`
.. c:function:: give_explicit_poly_and_gaussian:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,dim)
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
Called by:
.. hlist::
:columns: 3
* :c:func:`ao_two_e_integral`
* :c:func:`ao_two_e_integral_erf`
* :c:func:`ao_two_e_integral_schwartz_accel`
* :c:func:`ao_two_e_integral_schwartz_accel_erf`
* :c:func:`give_explicit_poly_and_gaussian_double`
* :c:func:`overlap_gaussian_xyz`
Calls:
.. hlist::
:columns: 3
* :c:func:`gaussian_product`
* :c:func:`multiply_poly`
* :c:func:`recentered_poly2`
.. c:function:: give_explicit_poly_and_gaussian_double:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine give_explicit_poly_and_gaussian_double(P_new,P_center,p,fact_k,iorder,alpha,beta,gama,a,b,A_center,B_center,Nucl_center,dim)
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3)
exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) exp(-(r-Nucl_center)^2 gama
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
Calls:
.. hlist::
:columns: 3
* :c:func:`gaussian_product`
* :c:func:`give_explicit_poly_and_gaussian`
.. c:function:: give_explicit_poly_and_gaussian_x:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine give_explicit_poly_and_gaussian_x(P_new,P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,dim)
Transform the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2)
Called by:
.. hlist::
:columns: 3
* :c:func:`overlap_gaussian_x`
Calls:
.. hlist::
:columns: 3
* :c:func:`multiply_poly`
* :c:func:`recentered_poly2`
.. c:function:: gser:
File : :file:`utils/need.irp.f`
.. code:: fortran
subroutine gser(gamser,a,x,gln)
Called by:
.. hlist::
:columns: 3
* :c:func:`gammp`
.. c:function:: heap_dsort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine heap_dsort(x,iorder,isize)
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
.. c:function:: heap_dsort_big:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine heap_dsort_big(x,iorder,isize)
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: heap_i2sort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine heap_i2sort(x,iorder,isize)
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
.. c:function:: heap_i2sort_big:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine heap_i2sort_big(x,iorder,isize)
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: heap_i8sort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine heap_i8sort(x,iorder,isize)
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
.. c:function:: heap_i8sort_big:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine heap_i8sort_big(x,iorder,isize)
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: heap_isort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine heap_isort(x,iorder,isize)
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
.. c:function:: heap_isort_big:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine heap_isort_big(x,iorder,isize)
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: heap_sort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine heap_sort(x,iorder,isize)
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
.. c:function:: heap_sort_big:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine heap_sort_big(x,iorder,isize)
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: hermite:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function hermite(n,x)
Hermite polynomial
.. c:function:: i2set_order:
File : :file:`utils/sort.irp.f_template_347`
.. code:: fortran
subroutine i2set_order(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
.. c:function:: i2set_order_big:
File : :file:`utils/sort.irp.f_template_412`
.. code:: fortran
subroutine i2set_order_big(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: i2sort:
File : :file:`utils/sort.irp.f_template_315`
.. code:: fortran
subroutine i2sort(x,iorder,isize)
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Calls:
.. hlist::
:columns: 3
* :c:func:`quick_i2sort`
.. c:function:: i8set_order:
File : :file:`utils/sort.irp.f_template_347`
.. code:: fortran
subroutine i8set_order(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
.. c:function:: i8set_order_big:
File : :file:`utils/sort.irp.f_template_412`
.. code:: fortran
subroutine i8set_order_big(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: i8sort:
File : :file:`utils/sort.irp.f_template_315`
.. code:: fortran
subroutine i8sort(x,iorder,isize)
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Called by:
.. hlist::
:columns: 3
* :c:func:`make_selection_buffer_s2`
* :c:data:`psi_bilinear_matrix_values`
* :c:data:`psi_det_alpha_unique`
* :c:data:`psi_det_beta_unique`
* :c:data:`psi_occ_pattern`
* :c:func:`remove_duplicates_in_selection_buffer`
* :c:func:`sort_dets_by_det_search_key`
Calls:
.. hlist::
:columns: 3
* :c:func:`quick_i8sort`
.. c:function:: insertion_dsort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine insertion_dsort (x,iorder,isize)
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Called by:
.. hlist::
:columns: 3
* :c:func:`dsort`
.. c:function:: insertion_dsort_big:
File : :file:`utils/sort.irp.f_template_412`
.. code:: fortran
subroutine insertion_dsort_big (x,iorder,isize)
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: insertion_i2sort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine insertion_i2sort (x,iorder,isize)
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Called by:
.. hlist::
:columns: 3
* :c:func:`i2radix_sort`
.. c:function:: insertion_i2sort_big:
File : :file:`utils/sort.irp.f_template_412`
.. code:: fortran
subroutine insertion_i2sort_big (x,iorder,isize)
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: insertion_i8sort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine insertion_i8sort (x,iorder,isize)
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Called by:
.. hlist::
:columns: 3
* :c:func:`i8radix_sort`
.. c:function:: insertion_i8sort_big:
File : :file:`utils/sort.irp.f_template_412`
.. code:: fortran
subroutine insertion_i8sort_big (x,iorder,isize)
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
Called by:
.. hlist::
:columns: 3
* :c:func:`i8radix_sort_big`
.. c:function:: insertion_isort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine insertion_isort (x,iorder,isize)
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Called by:
.. hlist::
:columns: 3
* :c:func:`iradix_sort`
.. c:function:: insertion_isort_big:
File : :file:`utils/sort.irp.f_template_412`
.. code:: fortran
subroutine insertion_isort_big (x,iorder,isize)
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
Called by:
.. hlist::
:columns: 3
* :c:func:`iradix_sort_big`
.. c:function:: insertion_sort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine insertion_sort (x,iorder,isize)
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Called by:
.. hlist::
:columns: 3
* :c:func:`sort`
.. c:function:: insertion_sort_big:
File : :file:`utils/sort.irp.f_template_412`
.. code:: fortran
subroutine insertion_sort_big (x,iorder,isize)
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: iset_order:
File : :file:`utils/sort.irp.f_template_347`
.. code:: fortran
subroutine iset_order(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
Called by:
.. hlist::
:columns: 3
* :c:data:`psi_bilinear_matrix_transp_values`
* :c:data:`psi_bilinear_matrix_values`
.. c:function:: iset_order_big:
File : :file:`utils/sort.irp.f_template_412`
.. code:: fortran
subroutine iset_order_big(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: isort:
File : :file:`utils/sort.irp.f_template_315`
.. code:: fortran
subroutine isort(x,iorder,isize)
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Called by:
.. hlist::
:columns: 3
* :c:func:`molden`
* :c:func:`select_singles_and_doubles`
Calls:
.. hlist::
:columns: 3
* :c:func:`quick_isort`
.. c:function:: lapack_diag:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine lapack_diag(eigvalues,eigvectors,H,nmax,n)
Diagonalize matrix H
H is untouched between input and ouptut
eigevalues(i) = ith lowest eigenvalue of the H matrix
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
Called by:
.. hlist::
:columns: 3
* :c:data:`ci_electronic_energy`
* :c:func:`davidson_diag_hjj_sjj`
* :c:func:`mo_as_eigvectors_of_mo_matrix`
* :c:data:`psi_coef_cas_diagonalized`
Calls:
.. hlist::
:columns: 3
* :c:func:`dsyev`
.. c:function:: lapack_diagd:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine lapack_diagd(eigvalues,eigvectors,H,nmax,n)
Diagonalize matrix H
H is untouched between input and ouptut
eigevalues(i) = ith lowest eigenvalue of the H matrix
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
Called by:
.. hlist::
:columns: 3
* :c:data:`inertia_tensor_eigenvectors`
Calls:
.. hlist::
:columns: 3
* :c:func:`dsyevd`
.. c:function:: logfact:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function logfact(n)
n!
.. c:function:: lowercase:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine lowercase(txt,n)
Transform to lower case
Called by:
.. hlist::
:columns: 3
* :c:func:`end_parallel_job`
* :c:func:`new_parallel_job`
.. c:function:: map_load_from_disk:
File : :file:`utils/map_functions.irp.f`
.. code:: fortran
subroutine map_load_from_disk(filename,map)
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_two_e_integrals_erf_in_map`
* :c:data:`ao_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_erf_in_map`
* :c:data:`mo_two_e_integrals_in_map`
Calls:
.. hlist::
:columns: 3
* :c:func:`c_f_pointer`
* :c:func:`mmap`
.. c:function:: map_save_to_disk:
File : :file:`utils/map_functions.irp.f`
.. code:: fortran
subroutine map_save_to_disk(filename,map)
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_two_e_integrals_erf_in_map`
* :c:data:`ao_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_erf_in_map`
* :c:data:`mo_two_e_integrals_in_map`
* :c:func:`save_erf_two_e_integrals_ao`
* :c:func:`save_erf_two_e_integrals_mo`
* :c:func:`save_erf_two_e_ints_ao_into_ints_ao`
* :c:func:`save_erf_two_e_ints_mo_into_ints_mo`
Calls:
.. hlist::
:columns: 3
* :c:func:`c_f_pointer`
* :c:func:`map_sort`
* :c:func:`mmap`
* :c:func:`msync`
.. c:function:: memory_of_double:
File : :file:`utils/memory.irp.f`
.. code:: fortran
double precision function memory_of_double(n)
Computes the memory required for n double precision elements in gigabytes.
.. c:function:: memory_of_int:
File : :file:`utils/memory.irp.f`
.. code:: fortran
double precision function memory_of_int(n)
Computes the memory required for n double precision elements in gigabytes.
.. c:function:: multiply_poly:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine multiply_poly(b,nb,c,nc,d,nd)
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
Called by:
.. hlist::
:columns: 3
* :c:func:`general_primitive_integral`
* :c:func:`general_primitive_integral_erf`
* :c:func:`give_explicit_poly_and_gaussian`
* :c:func:`give_explicit_poly_and_gaussian_x`
* :c:func:`give_polynomial_mult_center_one_e`
* :c:func:`give_polynomial_mult_center_one_e_erf`
* :c:func:`give_polynomial_mult_center_one_e_erf_opt`
* :c:func:`i_x1_pol_mult_a1`
* :c:func:`i_x1_pol_mult_a2`
* :c:func:`i_x1_pol_mult_one_e`
* :c:func:`i_x1_pol_mult_recurs`
* :c:func:`i_x2_pol_mult`
* :c:func:`i_x2_pol_mult_one_e`
.. c:function:: normalize:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine normalize(u,sze)
Normalizes vector u
Called by:
.. hlist::
:columns: 3
* :c:func:`copy_h_apply_buffer_to_wf`
* :c:func:`davidson_diag_hjj_sjj`
* :c:func:`save_wavefunction_general`
Calls:
.. hlist::
:columns: 3
* :c:func:`dscal`
.. c:function:: ortho_canonical:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_canonical(overlap,LDA,N,C,LDC,m)
Compute C_new=C_old.U.s^-1/2 canonical orthogonalization.
overlap : overlap matrix
LDA : leftmost dimension of overlap array
N : Overlap matrix is NxN (array is (LDA,N) )
C : Coefficients of the vectors to orthogonalize. On exit,
orthogonal vectors
LDC : leftmost dimension of C
m : Coefficients matrix is MxN, ( array is (LDC,N) )
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_ortho_canonical_coef`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`svd`
.. c:function:: ortho_lowdin:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_lowdin(overlap,LDA,N,C,LDC,m)
Compute C_new=C_old.S^-1/2 orthogonalization.
overlap : overlap matrix
LDA : leftmost dimension of overlap array
N : Overlap matrix is NxN (array is (LDA,N) )
C : Coefficients of the vectors to orthogonalize. On exit,
orthogonal vectors
LDC : leftmost dimension of C
M : Coefficients matrix is MxN, ( array is (LDC,N) )
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_ortho_lowdin_coef`
* :c:func:`orthonormalize_mos`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemm`
* :c:func:`svd`
.. c:function:: ortho_qr:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_qr(A,LDA,m,n)
Orthogonalization using Q.R factorization
A : matrix to orthogonalize
LDA : leftmost dimension of A
n : Number of rows of A
m : Number of columns of A
Called by:
.. hlist::
:columns: 3
* :c:func:`davidson_diag_hjj_sjj`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgeqrf`
* :c:func:`dorgqr`
.. c:function:: ortho_qr_unblocked:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine ortho_qr_unblocked(A,LDA,m,n)
Orthogonalization using Q.R factorization
A : matrix to orthogonalize
LDA : leftmost dimension of A
n : Number of rows of A
m : Number of columns of A
Calls:
.. hlist::
:columns: 3
* :c:func:`dgeqr2`
* :c:func:`dorg2r`
.. c:function:: overlap_gaussian_x:
File : :file:`utils/one_e_integration.irp.f`
.. code:: fortran
double precision function overlap_gaussian_x(A_center,B_center,alpha,beta,power_A,power_B,dim)
.. math::
\sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx
Calls:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian_x`
.. c:function:: overlap_x_abs:
File : :file:`utils/one_e_integration.irp.f`
.. code:: fortran
subroutine overlap_x_abs(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,lower_exp_val,dx,nx)
.. math ::
\int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx
Called by:
.. hlist::
:columns: 3
* :c:data:`ao_overlap_abs`
.. c:function:: print_memory_usage:
File : :file:`utils/memory.irp.f`
.. code:: fortran
subroutine print_memory_usage()
Prints the memory usage in the output
Called by:
.. hlist::
:columns: 3
* :c:func:`write_time`
Calls:
.. hlist::
:columns: 3
* :c:func:`resident_memory`
* :c:func:`total_memory`
.. c:function:: quick_dsort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine quick_dsort(x, iorder, isize)
Sort array x(isize) using the quicksort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Needs:
.. hlist::
:columns: 3
* :c:data:`nproc`
Called by:
.. hlist::
:columns: 3
* :c:func:`dsort`
Calls:
.. hlist::
:columns: 3
* :c:func:`rec_d_quicksort`
.. c:function:: quick_i2sort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine quick_i2sort(x, iorder, isize)
Sort array x(isize) using the quicksort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Needs:
.. hlist::
:columns: 3
* :c:data:`nproc`
Called by:
.. hlist::
:columns: 3
* :c:func:`i2sort`
Calls:
.. hlist::
:columns: 3
* :c:func:`rec_i2_quicksort`
.. c:function:: quick_i8sort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine quick_i8sort(x, iorder, isize)
Sort array x(isize) using the quicksort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Needs:
.. hlist::
:columns: 3
* :c:data:`nproc`
Called by:
.. hlist::
:columns: 3
* :c:func:`i8sort`
Calls:
.. hlist::
:columns: 3
* :c:func:`rec_i8_quicksort`
.. c:function:: quick_isort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine quick_isort(x, iorder, isize)
Sort array x(isize) using the quicksort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Needs:
.. hlist::
:columns: 3
* :c:data:`nproc`
Called by:
.. hlist::
:columns: 3
* :c:func:`isort`
Calls:
.. hlist::
:columns: 3
* :c:func:`rec_i_quicksort`
.. c:function:: quick_sort:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine quick_sort(x, iorder, isize)
Sort array x(isize) using the quicksort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Needs:
.. hlist::
:columns: 3
* :c:data:`nproc`
Called by:
.. hlist::
:columns: 3
* :c:func:`sort`
Calls:
.. hlist::
:columns: 3
* :c:func:`rec__quicksort`
.. c:function:: recentered_poly2:
File : :file:`utils/integration.irp.f`
.. code:: fortran
subroutine recentered_poly2(P_new,x_A,x_P,a,P_new2,x_B,x_Q,b)
Recenter two polynomials
Needs:
.. hlist::
:columns: 3
* :c:data:`binom`
Called by:
.. hlist::
:columns: 3
* :c:func:`give_explicit_poly_and_gaussian`
* :c:func:`give_explicit_poly_and_gaussian_x`
.. c:function:: resident_memory:
File : :file:`utils/memory.irp.f`
.. code:: fortran
subroutine resident_memory(value)
Returns the current used memory in gigabytes used by the current process.
Needs:
.. hlist::
:columns: 3
* :c:data:`file_lock`
Called by:
.. hlist::
:columns: 3
* :c:func:`check_mem`
* :c:func:`davidson_diag_hjj_sjj`
* :c:func:`print_memory_usage`
* :c:func:`run_slave_main`
* :c:func:`zmq_pt2`
Calls:
.. hlist::
:columns: 3
* :c:func:`omp_set_lock`
* :c:func:`omp_unset_lock`
.. c:function:: rint:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function rint(n,rho)
.. math::
\int_0^1 dx \exp(-p x^2) x^n
.. c:function:: rint1:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function rint1(n,rho)
Standard version of rint
Needs:
.. hlist::
:columns: 3
* :c:data:`inv_int`
* :c:data:`fact_inv`
.. c:function:: rint_large_n:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function rint_large_n(n,rho)
Version of rint for large values of n
.. c:function:: rint_sum:
File : :file:`utils/integration.irp.f`
.. code:: fortran
double precision function rint_sum(n_pt_out,rho,d1)
Needed for the calculation of two-electron integrals.
.. c:function:: rinteg:
File : :file:`utils/need.irp.f`
.. code:: fortran
double precision function rinteg(n,u)
.. c:function:: rintgauss:
File : :file:`utils/need.irp.f`
.. code:: fortran
double precision function rintgauss(n)
.. c:function:: sabpartial:
File : :file:`utils/need.irp.f`
.. code:: fortran
double precision function SABpartial(zA,zB,A,B,nA,nB,gamA,gamB,l)
Needs:
.. hlist::
:columns: 3
* :c:data:`binom`
.. c:function:: set_order:
File : :file:`utils/sort.irp.f_template_347`
.. code:: fortran
subroutine set_order(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
.. c:function:: set_order_big:
File : :file:`utils/sort.irp.f_template_412`
.. code:: fortran
subroutine set_order_big(x,iorder,isize)
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
.. c:function:: sort:
File : :file:`utils/sort.irp.f_template_293`
.. code:: fortran
subroutine sort(x,iorder,isize)
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
Calls:
.. hlist::
:columns: 3
* :c:func:`insertion_sort`
* :c:func:`quick_sort`
.. c:function:: sorted_dnumber:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine sorted_dnumber(x,isize,n)
Returns the number of sorted elements
.. c:function:: sorted_i2number:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine sorted_i2number(x,isize,n)
Returns the number of sorted elements
.. c:function:: sorted_i8number:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine sorted_i8number(x,isize,n)
Returns the number of sorted elements
.. c:function:: sorted_inumber:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine sorted_inumber(x,isize,n)
Returns the number of sorted elements
.. c:function:: sorted_number:
File : :file:`utils/sort.irp.f_template_261`
.. code:: fortran
subroutine sorted_number(x,isize,n)
Returns the number of sorted elements
.. c:function:: svd:
File : :file:`utils/linear_algebra.irp.f`
.. code:: fortran
subroutine svd(A,LDA,U,LDU,D,Vt,LDVt,m,n)
Compute A = U.D.Vt
LDx : leftmost dimension of x
Dimsneion of A is m x n
Called by:
.. hlist::
:columns: 3
* :c:func:`mo_as_svd_vectors_of_mo_matrix`
* :c:func:`mo_as_svd_vectors_of_mo_matrix_eig`
* :c:func:`ortho_canonical`
* :c:func:`ortho_lowdin`
* :c:data:`s_half`
* :c:data:`s_half_inv`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgesvd`
.. c:function:: total_memory:
File : :file:`utils/memory.irp.f`
.. code:: fortran
subroutine total_memory(value)
Returns the current used memory in gigabytes used by the current process.
Called by:
.. hlist::
:columns: 3
* :c:func:`print_memory_usage`
.. c:function:: u_dot_u:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function u_dot_u(u,sze)
Compute <u|u>
.. c:function:: u_dot_v:
File : :file:`utils/util.irp.f`
.. code:: fortran
double precision function u_dot_v(u,v,sze)
Compute <u|v>
.. c:function:: wall_time:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine wall_time(t)
The equivalent of cpu_time, but for the wall time.
Called by:
.. hlist::
:columns: 3
* :c:func:`add_integrals_to_map`
* :c:func:`add_integrals_to_map_erf`
* :c:func:`add_integrals_to_map_no_exit_34`
* :c:func:`add_integrals_to_map_three_indices`
* :c:data:`ao_pseudo_integrals_local`
* :c:data:`ao_pseudo_integrals_non_local`
* :c:data:`ao_two_e_integrals_erf_in_map`
* :c:data:`ao_two_e_integrals_in_map`
* :c:func:`davidson_converged`
* :c:func:`davidson_diag_hjj_sjj`
* :c:data:`output_wall_time_0`
* :c:func:`pt2_collector`
* :c:func:`run_pt2_slave_large`
* :c:func:`run_pt2_slave_small`
* :c:func:`run_slave_main`
* :c:func:`write_time`
Calls:
.. hlist::
:columns: 3
* :c:func:`system_clock`
.. c:function:: write_git_log:
File : :file:`utils/util.irp.f`
.. code:: fortran
subroutine write_git_log(iunit)
Write the last git commit in file iunit.