9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-10 18:04:45 +02:00
qp2/src/mo_two_e_ints/map_integrals_erf.irp.f

389 lines
11 KiB
Fortran

use map_module
integer function load_mo_integrals_erf(filename)
implicit none
BEGIN_DOC
! Read from disk the |MO| erf integrals
END_DOC
character*(*), intent(in) :: filename
integer*8 :: i
integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:)
integer :: iknd, kknd
integer*8 :: n, j
load_mo_integrals_erf = 1
open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN')
read(66,err=98,end=98) iknd, kknd
if (iknd /= integral_kind) then
print *, 'Wrong integrals kind in file :', iknd
stop 1
endif
if (kknd /= key_kind) then
print *, 'Wrong key kind in file :', kknd
stop 1
endif
read(66,err=98,end=98) mo_integrals_erf_map%sorted, mo_integrals_erf_map%map_size,&
mo_integrals_erf_map%n_elements
do i=0_8, mo_integrals_erf_map%map_size
read(66,err=99,end=99) mo_integrals_erf_map%map(i)%sorted, &
mo_integrals_erf_map%map(i)%map_size, mo_integrals_erf_map%map(i)%n_elements
call cache_map_reallocate(mo_integrals_erf_map%map(i),mo_integrals_erf_map%map(i)%map_size)
enddo
do i=0_8, mo_integrals_erf_map%map_size
key => mo_integrals_erf_map%map(i)%key
val => mo_integrals_erf_map%map(i)%value
n = mo_integrals_erf_map%map(i)%n_elements
read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n)
enddo
call map_sort(mo_integrals_erf_map)
load_mo_integrals_erf = 0
return
99 continue
call map_deinit(mo_integrals_erf_map)
98 continue
stop 'Problem reading mo_integrals_erf_map file in work/'
end
BEGIN_PROVIDER [ type(map_type), mo_integrals_erf_map ]
implicit none
BEGIN_DOC
! |MO| integrals
END_DOC
integer(key_kind) :: key_max
integer(map_size_kind) :: sze
call two_e_integrals_index(mo_num,mo_num,mo_num,mo_num,key_max)
sze = key_max
call map_init(mo_integrals_erf_map,sze)
print*, 'MO erf map initialized'
END_PROVIDER
subroutine insert_into_mo_integrals_erf_map(n_integrals, &
buffer_i, buffer_values, thr)
use map_module
implicit none
BEGIN_DOC
! Create new entry into |MO| map, or accumulate in an existing entry
END_DOC
integer, intent(in) :: n_integrals
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
real(integral_kind), intent(in) :: thr
call map_update(mo_integrals_erf_map, buffer_i, buffer_values, n_integrals, thr)
end
BEGIN_PROVIDER [ integer, mo_integrals_erf_cache_min ]
&BEGIN_PROVIDER [ integer, mo_integrals_erf_cache_max ]
implicit none
BEGIN_DOC
! Min and max values of the MOs for which the integrals are in the cache
END_DOC
mo_integrals_erf_cache_min = max(1,elec_alpha_num - 31)
mo_integrals_erf_cache_max = min(mo_num,mo_integrals_erf_cache_min+63)
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_integrals_erf_cache, (0:64*64*64*64) ]
implicit none
BEGIN_DOC
! Cache of |MO| integrals for fast access
END_DOC
PROVIDE mo_two_e_integrals_erf_in_map
integer :: i,j,k,l
integer :: ii
integer(key_kind) :: idx
real(integral_kind) :: integral
FREE ao_integrals_erf_cache
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
do l=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
do k=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
do j=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
do i=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(mo_integrals_erf_map,idx,integral)
ii = l-mo_integrals_erf_cache_min
ii = ior( ishft(ii,6), k-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), j-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), i-mo_integrals_erf_cache_min)
mo_integrals_erf_cache(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
double precision function get_mo_two_e_integral_erf(i,j,k,l,map)
use map_module
implicit none
BEGIN_DOC
! Returns one integral $\langle ij|kl \rangle$ in the |MO| basis
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
integer :: ii
type(map_type), intent(inout) :: map
real(integral_kind) :: tmp
PROVIDE mo_two_e_integrals_erf_in_map mo_integrals_erf_cache
ii = l-mo_integrals_erf_cache_min
ii = ior(ii, k-mo_integrals_erf_cache_min)
ii = ior(ii, j-mo_integrals_erf_cache_min)
ii = ior(ii, i-mo_integrals_erf_cache_min)
if (iand(ii, -64) /= 0) then
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(map,idx,tmp)
get_mo_two_e_integral_erf = dble(tmp)
else
ii = l-mo_integrals_erf_cache_min
ii = ior( ishft(ii,6), k-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), j-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), i-mo_integrals_erf_cache_min)
get_mo_two_e_integral_erf = mo_integrals_erf_cache(ii)
endif
end
double precision function mo_two_e_integral_erf(i,j,k,l)
implicit none
BEGIN_DOC
! Returns one integral $\langle ij|kl \rangle$ in the |MO| basis
END_DOC
integer, intent(in) :: i,j,k,l
double precision :: get_mo_two_e_integral_erf
PROVIDE mo_two_e_integrals_erf_in_map mo_integrals_erf_cache
!DIR$ FORCEINLINE
PROVIDE mo_two_e_integrals_erf_in_map
mo_two_e_integral_erf = get_mo_two_e_integral_erf(i,j,k,l,mo_integrals_erf_map)
return
end
subroutine get_mo_two_e_integrals_erf(j,k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals $\langle ij|kl \rangle$ in the |MO| basis, all
! i for j,k,l fixed.
END_DOC
integer, intent(in) :: j,k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_two_e_integrals_erf_in_map
do i=1,sze
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,k,l,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
subroutine get_mo_two_e_integrals_erf_ij(k,l,sze,out_array,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals $\langle ij|kl \rangle$ in the |MO| basis, all
! $\int i(1)j(2) \frac{1}{r_{12}} k(1)l(2)$
! i, j for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_array(sze,sze)
type(map_type), intent(inout) :: map
integer :: i,j,kk,ll,m
integer(key_kind),allocatable :: hash(:)
integer ,allocatable :: pairs(:,:), iorder(:)
real(integral_kind), allocatable :: tmp_val(:)
PROVIDE mo_two_e_integrals_erf_in_map
allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), &
tmp_val(sze*sze))
kk=0
out_array = 0.d0
do j=1,sze
do i=1,sze
kk += 1
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,k,l,hash(kk))
pairs(1,kk) = i
pairs(2,kk) = j
iorder(kk) = kk
enddo
enddo
logical :: integral_is_in_map
if (key_kind == 8) then
call i8sort(hash,iorder,kk)
else if (key_kind == 4) then
call isort(hash,iorder,kk)
else if (key_kind == 2) then
call i2sort(hash,iorder,kk)
endif
call map_get_many(mo_integrals_erf_map, hash, tmp_val, kk)
do ll=1,kk
m = iorder(ll)
i=pairs(1,m)
j=pairs(2,m)
out_array(i,j) = tmp_val(ll)
enddo
deallocate(pairs,hash,iorder,tmp_val)
end
subroutine get_mo_two_e_integrals_erf_i1j1(k,l,sze,out_array,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals $\langle ik|jl \rangle$ in the |MO| basis, all
! $\int i(1)j(1) \frac{\erf(\mu * r_{12})}{r_{12}} k(2)l(2)$
! i, j for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_array(sze,sze)
type(map_type), intent(inout) :: map
integer :: i,j,kk,ll,m
integer(key_kind),allocatable :: hash(:)
integer ,allocatable :: pairs(:,:), iorder(:)
real(integral_kind), allocatable :: tmp_val(:)
PROVIDE mo_two_e_integrals_erf_in_map
allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), &
tmp_val(sze*sze))
kk=0
out_array = 0.d0
do j=1,sze
do i=1,sze
kk += 1
!DIR$ FORCEINLINE
call two_e_integrals_index(i,k,j,l,hash(kk))
pairs(1,kk) = i
pairs(2,kk) = j
iorder(kk) = kk
enddo
enddo
logical :: integral_is_in_map
if (key_kind == 8) then
call i8sort(hash,iorder,kk)
else if (key_kind == 4) then
call isort(hash,iorder,kk)
else if (key_kind == 2) then
call i2sort(hash,iorder,kk)
endif
call map_get_many(mo_integrals_erf_map, hash, tmp_val, kk)
do ll=1,kk
m = iorder(ll)
i=pairs(1,m)
j=pairs(2,m)
out_array(i,j) = tmp_val(ll)
enddo
deallocate(pairs,hash,iorder,tmp_val)
end
subroutine get_mo_two_e_integrals_erf_coulomb_ii(k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals $\langle ki|li \rangle$
!
! k(1)i(2) 1/r12 l(1)i(2) :: out_val(i1)
! for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_two_e_integrals_erf_in_map
integer :: kk
do i=1,sze
!DIR$ FORCEINLINE
call two_e_integrals_index(k,i,l,i,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
subroutine get_mo_two_e_integrals_erf_exch_ii(k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals $\langle ki|il \rangle$
!
! $\int k(1)i(2) \frac{1}{r_{12}} i(1)l(2)$ :: out_val(i1)
! for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_two_e_integrals_erf_in_map
integer :: kk
do i=1,sze
!DIR$ FORCEINLINE
call two_e_integrals_index(k,i,i,l,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
integer*8 function get_mo_erf_map_size()
implicit none
BEGIN_DOC
! Returns the number of elements in the |MO| map
END_DOC
get_mo_erf_map_size = mo_integrals_erf_map % n_elements
end