9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-17 01:55:17 +02:00
qp2/src/cisd/cisd.irp.f
Emmanuel Giner LCT 40239f100c Merge alors
2019-10-24 13:56:53 +02:00

104 lines
3.4 KiB
Fortran
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

program cisd
implicit none
BEGIN_DOC
! Configuration Interaction with Single and Double excitations.
!
! This program takes a reference Slater determinant of ROHF-like occupancy,
!
! and performs all single and double excitations on top of it, disregarding
! spatial symmetry and compute the "n_states" lowest eigenstates of that CI
! matrix (see :option:`determinants n_states`).
!
! This program can be useful in many cases:
!
! * **Ground state calculation**: if even after a :c:func:`cis` calculation, natural
! orbitals (see :c:func:`save_natorb`) and then :c:func:`scf` optimization, you are not sure to have the lowest scf
! solution,
! do the same strategy with the :c:func:`cisd` executable instead of the :c:func:`cis` exectuable to generate the natural
! orbitals as a guess for the :c:func:`scf`.
!
!
!
! * **Excited states calculations**: the lowest excited states are much likely to
! be dominanted by single- or double-excitations.
! Therefore, running a :c:func:`cisd` will save the "n_states" lowest states within
! the CISD space
! in the |EZFIO| directory, which can afterward be used as guess wave functions
! for a further multi-state fci calculation if you specify "read_wf" = True
! before running the fci executable (see :option:`determinants read_wf`).
! Also, if you specify "s2_eig" = True, the cisd will only retain states
! having the good value :math:`S^2` value
! (see :option:`determinants expected_s2` and :option:`determinants s2_eig`).
! If "s2_eig" = False, it will take the lowest n_states, whatever
! multiplicity they are.
!
!
!
! Note: if you would like to discard some orbitals, use
! :ref:`qp_set_mo_class` to specify:
!
! * "core" orbitals which will be always doubly occupied
!
! * "act" orbitals where an electron can be either excited from or to
!
! * "del" orbitals which will be never occupied
!
END_DOC
PROVIDE N_states
read_wf = .False.
SOFT_TOUCH read_wf
call run
end
subroutine run
implicit none
integer :: i,k
double precision :: cisdq(N_states), delta_e
double precision,external :: diag_h_mat_elem
if(pseudo_sym)then
call H_apply_cisd_sym
else
call H_apply_cisd
endif
psi_coef = ci_eigenvectors
SOFT_TOUCH psi_coef
call save_wavefunction
call ezfio_set_cisd_energy(CI_energy)
do i = 1,N_states
k = maxloc(dabs(psi_coef_sorted(1:N_det,i)),dim=1)
delta_E = CI_electronic_energy(i) - diag_h_mat_elem(psi_det_sorted(1,1,k),N_int)
cisdq(i) = CI_energy(i) + delta_E * (1.d0 - psi_coef_sorted(k,i)**2)
enddo
print *, 'N_det = ', N_det
print*,''
print*,'******************************'
print *, 'CISD Energies'
do i = 1,N_states
print *, i, CI_energy(i)
enddo
print*,''
print*,'******************************'
print *, 'CISD+Q Energies'
do i = 1,N_states
print *, i, cisdq(i)
enddo
if (N_states > 1) then
print*,''
print*,'******************************'
print*,'Excitation energies (au) (CISD+Q)'
do i = 2, N_states
print*, i ,CI_energy(i) - CI_energy(1), cisdq(i) - cisdq(1)
enddo
print*,''
print*,'******************************'
print*,'Excitation energies (eV) (CISD+Q)'
do i = 2, N_states
print*, i ,(CI_energy(i) - CI_energy(1))/0.0367502d0, &
(cisdq(i) - cisdq(1)) / 0.0367502d0
enddo
endif
end