9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-05 01:48:34 +01:00
qp2/plugins/local/non_h_ints_mu/jast_1e.irp.f
2024-02-04 13:22:26 +01:00

307 lines
8.0 KiB
Fortran

! ---
BEGIN_PROVIDER [double precision, j1e_val, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, p
double precision :: x, y, z, dx, dy, dz, d2
double precision :: a, c, tmp
double precision :: time0, time1
PROVIDE j1e_type
call wall_time(time0)
print*, ' providing j1e_val ...'
if(j1e_type .eq. "None") then
j1e_val = 0.d0
elseif(j1e_type .eq. "Gauss") then
! \sum_{A} \sum_p c_{p_A} \exp(-\alpha_{p_A} (r - R_A)^2)
PROVIDE j1e_size j1e_coef j1e_expo
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp = 0.d0
do j = 1, nucl_num
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d2 = dx*dx + dy*dy + dz*dz
do p = 1, j1e_size
c = j1e_coef(p,j)
a = j1e_expo(p,j)
tmp = tmp + c * dexp(-a*d2)
enddo
enddo
j1e_val(ipoint) = tmp
enddo
else
print *, ' Error in j1e_val: Unknown j1e_type = ', j1e_type
stop
endif
call wall_time(time1)
print*, ' Wall time for j1e_val (min) = ', (time1 - time0) / 60.d0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, j1e_gradx, (n_points_final_grid)]
&BEGIN_PROVIDER [double precision, j1e_grady, (n_points_final_grid)]
&BEGIN_PROVIDER [double precision, j1e_gradz, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, ij, p
integer :: ierr
logical :: exists
double precision :: x, y, z, dx, dy, dz, d2
double precision :: a, c, g, tmp_x, tmp_y, tmp_z
double precision :: cx, cy, cz
double precision :: time0, time1
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: coef_fit2(:,:)
PROVIDE j1e_type
call wall_time(time0)
print*, ' providing j1e_grad ...'
if(j1e_type .eq. "None") then
j1e_gradx = 0.d0
j1e_grady = 0.d0
j1e_gradz = 0.d0
elseif(j1e_type .eq. "Gauss") then
! - \sum_{A} (r - R_A) \sum_p c_{p_A} \exp(-\alpha_{p_A} (r - R_A)^2)
PROVIDE j1e_size j1e_coef j1e_expo
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp_x = 0.d0
tmp_y = 0.d0
tmp_z = 0.d0
do j = 1, nucl_num
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d2 = dx*dx + dy*dy + dz*dz
do p = 1, j1e_size
c = j1e_coef(p,j)
a = j1e_expo(p,j)
g = c * a * dexp(-a*d2)
tmp_x = tmp_x + g * dx
tmp_y = tmp_y + g * dy
tmp_z = tmp_z + g * dz
enddo
enddo
j1e_gradx(ipoint) = -2.d0 * tmp_x
j1e_grady(ipoint) = -2.d0 * tmp_y
j1e_gradz(ipoint) = -2.d0 * tmp_z
enddo
elseif(j1e_type .eq. "Charge_Harmonizer") then
! -[(N-1)/2N] x \sum_{\mu,\nu} P_{\mu,\nu} \int dr2 [\grad_r1 J_2e(r1,r2)] \phi_\mu(r2) \phi_nu(r2)
PROVIDE elec_alpha_num elec_beta_num elec_num
PROVIDE mo_coef
PROVIDE int2_grad1_u2e_ao
allocate(Pa(ao_num,ao_num), Pb(ao_num,ao_num), Pt(ao_num,ao_num))
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pa, size(Pa, 1))
if(elec_alpha_num .eq. elec_beta_num) then
Pb = Pa
else
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pb, size(Pb, 1))
endif
Pt = Pa + Pb
g = -0.5d0 * (dble(elec_num) - 1.d0) / dble(elec_num)
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_grad1_u2e_ao(1,1,1,1), ao_num*ao_num, Pt, 1, 0.d0, j1e_gradx, 1)
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_grad1_u2e_ao(1,1,1,2), ao_num*ao_num, Pt, 1, 0.d0, j1e_grady, 1)
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_grad1_u2e_ao(1,1,1,3), ao_num*ao_num, Pt, 1, 0.d0, j1e_gradz, 1)
FREE int2_grad1_u2e_ao
deallocate(Pa, Pb, Pt)
elseif(j1e_type .eq. "Charge_Harmonizer_AO") then
! \grad_1 \sum_{\eta,\beta} C_{\eta,\beta} \chi_{\eta} \chi_{\beta}
! where
! \chi_{\eta} are the AOs
! C_{\eta,\beta} are fitted to mimic (j1e_type .eq. "Charge_Harmonizer")
!
! The - sign is in the parameters C_{\eta,\beta}
PROVIDE aos_grad_in_r_array
allocate(coef_fit2(ao_num,ao_num))
if(mpi_master) then
call ezfio_has_jastrow_j1e_coef_ao2(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
call MPI_BCAST(coef_fit2, (ao_num*ao_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao2 with MPI'
endif
IRP_ENDIF
if(exists) then
if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef_ao2 ] <<<<< ..'
call ezfio_get_jastrow_j1e_coef_ao2(coef_fit2)
IRP_IF MPI
call MPI_BCAST(coef_fit2, (ao_num*ao_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao2 with MPI'
endif
IRP_ENDIF
endif
else
call get_j1e_coef_fit_ao2(ao_num, coef_fit2)
call ezfio_set_jastrow_j1e_coef_ao2(coef_fit2)
endif
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint, c) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP aos_grad_in_r_array, coef_fit2, &
!$OMP aos_in_r_array, j1e_gradx, j1e_grady, j1e_gradz)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
j1e_gradx(ipoint) = 0.d0
j1e_grady(ipoint) = 0.d0
j1e_gradz(ipoint) = 0.d0
do i = 1, ao_num
do j = 1, ao_num
c = coef_fit2(j,i)
j1e_gradx(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,1) + aos_grad_in_r_array(i,ipoint,1) * aos_in_r_array(j,ipoint))
j1e_grady(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,2) + aos_grad_in_r_array(i,ipoint,2) * aos_in_r_array(j,ipoint))
j1e_gradz(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,3) + aos_grad_in_r_array(i,ipoint,3) * aos_in_r_array(j,ipoint))
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(coef_fit2)
else
print *, ' Error in j1e_grad: Unknown j1e_type = ', j1e_type
stop
endif
call wall_time(time1)
print*, ' Wall time for j1e_grad (min) = ', (time1 - time0) / 60.d0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, j1e_lapl, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, p
double precision :: x, y, z, dx, dy, dz, d2
double precision :: a, c, g, tmp
if(j1e_type .eq. "None") then
j1e_lapl = 0.d0
elseif(j1e_type .eq. "Gauss") then
! - \sum_{A} (r - R_A) \sum_p c_{p_A} \exp(-\alpha_{p_A} (r - R_A)^2)
PROVIDE j1e_size j1e_coef j1e_expo
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp = 0.d0
do j = 1, nucl_num
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d2 = dx*dx + dy*dy + dz*dz
do p = 1, j1e_size
c = j1e_coef(p,j)
a = j1e_expo(p,j)
g = c * a * dexp(-a*d2)
tmp = tmp + (2.d0 * a * d2 - 3.d0) * g
enddo
enddo
j1e_lapl(ipoint) = tmp
enddo
else
print *, ' Error in j1e_lapl: Unknown j1e_type = ', j1e_type
stop
endif
END_PROVIDER
! ---