mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-10 20:18:12 +01:00
834 lines
23 KiB
Fortran
834 lines
23 KiB
Fortran
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [ double precision, ref_tc_energy_tot]
|
|
&BEGIN_PROVIDER [ double precision, ref_tc_energy_1e]
|
|
&BEGIN_PROVIDER [ double precision, ref_tc_energy_2e]
|
|
&BEGIN_PROVIDER [ double precision, ref_tc_energy_3e]
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! Various component of the TC energy for the reference "HF" Slater determinant
|
|
!
|
|
END_DOC
|
|
|
|
implicit none
|
|
double precision :: hmono, htwoe, htot, hthree
|
|
|
|
PROVIDE N_int
|
|
PROVIDE HF_bitmask
|
|
PROVIDE mo_l_coef mo_r_coef
|
|
|
|
call diag_htc_bi_orth_2e_brute(N_int, HF_bitmask, hmono, htwoe, htot)
|
|
|
|
ref_tc_energy_1e = hmono
|
|
ref_tc_energy_2e = htwoe
|
|
|
|
if(three_body_h_tc) then
|
|
call diag_htc_bi_orth_3e_brute(N_int, HF_bitmask, hthree)
|
|
ref_tc_energy_3e = hthree
|
|
else
|
|
ref_tc_energy_3e = 0.d0
|
|
endif
|
|
|
|
ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e + nuclear_repulsion
|
|
|
|
if(noL_standard) then
|
|
PROVIDE noL_0e
|
|
ref_tc_energy_tot += noL_0e
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
! ---
|
|
|
|
subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree, htot)
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! Computes $\langle i|H|i \rangle$.
|
|
!
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: Nint
|
|
integer(bit_kind), intent(in) :: det_in(Nint,2)
|
|
double precision, intent(out) :: hmono, htwoe, htot, hthree
|
|
|
|
integer(bit_kind) :: hole(Nint,2)
|
|
integer(bit_kind) :: particle(Nint,2)
|
|
integer :: i, nexc(2), ispin
|
|
integer :: occ_particle(Nint*bit_kind_size,2)
|
|
integer :: occ_hole(Nint*bit_kind_size,2)
|
|
integer(bit_kind) :: det_tmp(Nint,2)
|
|
integer :: na, nb
|
|
|
|
ASSERT (Nint > 0)
|
|
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
|
|
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
|
|
|
|
nexc(1) = 0
|
|
nexc(2) = 0
|
|
do i = 1, Nint
|
|
hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1))
|
|
hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2))
|
|
particle(i,1) = iand(hole(i,1),det_in(i,1))
|
|
particle(i,2) = iand(hole(i,2),det_in(i,2))
|
|
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
|
|
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
|
|
nexc(1) = nexc(1) + popcnt(hole(i,1))
|
|
nexc(2) = nexc(2) + popcnt(hole(i,2))
|
|
enddo
|
|
|
|
if (nexc(1)+nexc(2) == 0) then
|
|
hmono = ref_tc_energy_1e
|
|
htwoe = ref_tc_energy_2e
|
|
hthree = ref_tc_energy_3e
|
|
htot = ref_tc_energy_tot
|
|
return
|
|
endif
|
|
|
|
!call debug_det(det_in,Nint)
|
|
integer :: tmp(2)
|
|
!DIR$ FORCEINLINE
|
|
call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
|
|
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
|
|
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
|
|
!DIR$ FORCEINLINE
|
|
call bitstring_to_list_ab(hole, occ_hole, tmp, Nint)
|
|
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
|
|
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
|
|
|
|
hmono = ref_tc_energy_1e
|
|
htwoe = ref_tc_energy_2e
|
|
hthree = ref_tc_energy_3e
|
|
|
|
det_tmp = ref_bitmask
|
|
|
|
do ispin = 1, 2
|
|
na = elec_num_tab(ispin)
|
|
nb = elec_num_tab(iand(ispin,1)+1)
|
|
do i = 1, nexc(ispin)
|
|
!DIR$ FORCEINLINE
|
|
call ac_tc_operator(occ_particle(i,ispin), ispin, det_tmp, hmono, htwoe, hthree, Nint, na, nb)
|
|
!DIR$ FORCEINLINE
|
|
call a_tc_operator (occ_hole (i,ispin), ispin, det_tmp, hmono, htwoe, hthree, Nint, na, nb)
|
|
enddo
|
|
enddo
|
|
|
|
htot = hmono + htwoe + hthree + nuclear_repulsion
|
|
|
|
if(noL_standard) then
|
|
PROVIDE noL_0e
|
|
htot += noL_0e
|
|
endif
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
subroutine ac_tc_operator(iorb, ispin, key, hmono, htwoe, hthree, Nint, na, nb)
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! Routine that computes one- and two-body energy corresponding
|
|
!
|
|
! to the ADDITION of an electron in an orbital 'iorb' of spin 'ispin'
|
|
!
|
|
! onto a determinant 'key'.
|
|
!
|
|
! in output, the determinant key is changed by the ADDITION of that electron
|
|
!
|
|
! and the quantities hmono,htwoe,hthree are INCREMENTED
|
|
!
|
|
END_DOC
|
|
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: iorb, ispin, Nint
|
|
integer, intent(inout) :: na, nb
|
|
integer(bit_kind), intent(inout) :: key(Nint,2)
|
|
double precision, intent(inout) :: hmono, htwoe, hthree
|
|
|
|
integer :: occ(Nint*bit_kind_size,2)
|
|
integer :: other_spin
|
|
integer :: k, l, i, jj, mm, j, m
|
|
integer :: tmp(2)
|
|
double precision :: direct_int, exchange_int
|
|
|
|
if (iorb < 1) then
|
|
print *, irp_here, ': iorb < 1'
|
|
print *, iorb, mo_num
|
|
stop -1
|
|
endif
|
|
if (iorb > mo_num) then
|
|
print *, irp_here, ': iorb > mo_num'
|
|
print *, iorb, mo_num
|
|
stop -1
|
|
endif
|
|
|
|
ASSERT (ispin > 0)
|
|
ASSERT (ispin < 3)
|
|
ASSERT (Nint > 0)
|
|
|
|
!DIR$ FORCEINLINE
|
|
call bitstring_to_list_ab(key, occ, tmp, Nint)
|
|
ASSERT (tmp(1) == elec_alpha_num)
|
|
ASSERT (tmp(2) == elec_beta_num)
|
|
|
|
k = shiftr(iorb-1,bit_kind_shift)+1
|
|
ASSERT (k >0)
|
|
l = iorb - shiftl(k-1,bit_kind_shift)-1
|
|
ASSERT (l >= 0)
|
|
key(k,ispin) = ibset(key(k,ispin),l)
|
|
other_spin = iand(ispin,1)+1
|
|
|
|
hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb)
|
|
|
|
! Same spin
|
|
do i = 1, na
|
|
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
|
|
enddo
|
|
|
|
! Opposite spin
|
|
do i = 1, nb
|
|
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
|
|
enddo
|
|
|
|
if(three_body_h_tc .and. (elec_num.gt.2) .and. three_e_3_idx_term) then
|
|
!!!!! 3-e part
|
|
|
|
!! same-spin/same-spin
|
|
do j = 1, na
|
|
jj = occ(j,ispin)
|
|
do m = j+1, na
|
|
mm = occ(m,ispin)
|
|
hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb)
|
|
enddo
|
|
enddo
|
|
!! same-spin/oposite-spin
|
|
do j = 1, na
|
|
jj = occ(j,ispin)
|
|
do m = 1, nb
|
|
mm = occ(m,other_spin)
|
|
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
|
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
|
hthree += direct_int - exchange_int
|
|
enddo
|
|
enddo
|
|
!! oposite-spin/opposite-spin
|
|
do j = 1, nb
|
|
jj = occ(j,other_spin)
|
|
do m = j+1, nb
|
|
mm = occ(m,other_spin)
|
|
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
|
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
|
hthree += direct_int - exchange_int
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
na = na + 1
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
subroutine a_tc_operator(iorb, ispin, key, hmono, htwoe, hthree, Nint, na, nb)
|
|
|
|
use bitmasks
|
|
implicit none
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! Routine that computes one- and two-body energy corresponding
|
|
!
|
|
! to the REMOVAL of an electron in an orbital 'iorb' of spin 'ispin'
|
|
!
|
|
! onto a determinant 'key'.
|
|
!
|
|
! in output, the determinant key is changed by the REMOVAL of that electron
|
|
!
|
|
! and the quantities hmono,htwoe,hthree are INCREMENTED
|
|
!
|
|
END_DOC
|
|
|
|
integer, intent(in) :: iorb, ispin, Nint
|
|
integer, intent(inout) :: na, nb
|
|
integer(bit_kind), intent(inout) :: key(Nint,2)
|
|
double precision, intent(inout) :: hmono,htwoe,hthree
|
|
|
|
double precision :: direct_int, exchange_int
|
|
integer :: occ(Nint*bit_kind_size,2)
|
|
integer :: other_spin
|
|
integer :: k, l, i, jj, mm, j, m
|
|
integer :: tmp(2)
|
|
|
|
ASSERT (iorb > 0)
|
|
ASSERT (ispin > 0)
|
|
ASSERT (ispin < 3)
|
|
ASSERT (Nint > 0)
|
|
|
|
k = shiftr(iorb-1,bit_kind_shift)+1
|
|
ASSERT (k>0)
|
|
l = iorb - shiftl(k-1,bit_kind_shift)-1
|
|
key(k,ispin) = ibclr(key(k,ispin),l)
|
|
other_spin = iand(ispin,1)+1
|
|
|
|
!DIR$ FORCEINLINE
|
|
call bitstring_to_list_ab(key, occ, tmp, Nint)
|
|
na = na-1
|
|
|
|
hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb)
|
|
|
|
! Same spin
|
|
do i = 1, na
|
|
htwoe = htwoe - mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
|
|
enddo
|
|
|
|
! Opposite spin
|
|
do i = 1, nb
|
|
htwoe = htwoe - mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
|
|
enddo
|
|
|
|
if(three_body_h_tc .and. elec_num.gt.2 .and. three_e_3_idx_term) then
|
|
!!!!! 3-e part
|
|
|
|
!! same-spin/same-spin
|
|
do j = 1, na
|
|
jj = occ(j,ispin)
|
|
do m = j+1, na
|
|
mm = occ(m,ispin)
|
|
hthree -= three_e_diag_parrallel_spin_prov(mm,jj,iorb)
|
|
enddo
|
|
enddo
|
|
!! same-spin/oposite-spin
|
|
do j = 1, na
|
|
jj = occ(j,ispin)
|
|
do m = 1, nb
|
|
mm = occ(m,other_spin)
|
|
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
|
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
|
hthree -= (direct_int - exchange_int)
|
|
enddo
|
|
enddo
|
|
!! oposite-spin/opposite-spin
|
|
do j = 1, nb
|
|
jj = occ(j,other_spin)
|
|
do m = j+1, nb
|
|
mm = occ(m,other_spin)
|
|
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
|
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
|
hthree -= (direct_int - exchange_int)
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
subroutine diag_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, det_in,htot)
|
|
|
|
BEGIN_DOC
|
|
! Computes $\langle i|H|i \rangle$. WITHOUT ANY CONTRIBUTIONS FROM 3E TERMS
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer, intent(in) :: Nint
|
|
integer(bit_kind), intent(in) :: det_in(Nint,2)
|
|
double precision, intent(out) :: htot
|
|
double precision :: hmono, htwoe
|
|
integer(bit_kind) :: hole(Nint,2)
|
|
integer(bit_kind) :: particle(Nint,2)
|
|
integer :: i, nexc(2), ispin
|
|
integer :: occ_particle(Nint*bit_kind_size,2)
|
|
integer :: occ_hole(Nint*bit_kind_size,2)
|
|
integer(bit_kind) :: det_tmp(Nint,2)
|
|
integer :: na, nb
|
|
|
|
ASSERT (Nint > 0)
|
|
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
|
|
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
|
|
|
|
|
|
nexc(1) = 0
|
|
nexc(2) = 0
|
|
do i=1,Nint
|
|
hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1))
|
|
hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2))
|
|
particle(i,1) = iand(hole(i,1),det_in(i,1))
|
|
particle(i,2) = iand(hole(i,2),det_in(i,2))
|
|
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
|
|
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
|
|
nexc(1) = nexc(1) + popcnt(hole(i,1))
|
|
nexc(2) = nexc(2) + popcnt(hole(i,2))
|
|
enddo
|
|
|
|
if(nexc(1)+nexc(2) == 0) then
|
|
hmono = ref_tc_energy_1e
|
|
htwoe = ref_tc_energy_2e
|
|
htot = ref_tc_energy_tot
|
|
return
|
|
endif
|
|
|
|
!call debug_det(det_in,Nint)
|
|
integer :: tmp(2)
|
|
!DIR$ FORCEINLINE
|
|
call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
|
|
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
|
|
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
|
|
!DIR$ FORCEINLINE
|
|
call bitstring_to_list_ab(hole, occ_hole, tmp, Nint)
|
|
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
|
|
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
|
|
|
|
det_tmp = ref_bitmask
|
|
|
|
hmono = ref_tc_energy_1e
|
|
htwoe = ref_tc_energy_2e
|
|
do ispin=1,2
|
|
na = elec_num_tab(ispin)
|
|
nb = elec_num_tab(iand(ispin,1)+1)
|
|
do i=1,nexc(ispin)
|
|
!DIR$ FORCEINLINE
|
|
call ac_tc_operator_no_3e( occ_particle(i,ispin), ispin, det_tmp, hmono,htwoe, Nint,na,nb)
|
|
!DIR$ FORCEINLINE
|
|
call a_tc_operator_no_3e ( occ_hole (i,ispin), ispin, det_tmp, hmono,htwoe, Nint,na,nb)
|
|
enddo
|
|
enddo
|
|
htot = hmono+htwoe
|
|
end
|
|
|
|
subroutine ac_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Routine that computes one- and two-body energy corresponding
|
|
!
|
|
! to the ADDITION of an electron in an orbital 'iorb' of spin 'ispin'
|
|
!
|
|
! onto a determinant 'key'.
|
|
!
|
|
! in output, the determinant key is changed by the ADDITION of that electron
|
|
!
|
|
! and the quantities hmono,htwoe are INCREMENTED
|
|
END_DOC
|
|
integer, intent(in) :: iorb, ispin, Nint
|
|
integer, intent(inout) :: na, nb
|
|
integer(bit_kind), intent(inout) :: key(Nint,2)
|
|
double precision, intent(inout) :: hmono,htwoe
|
|
|
|
integer :: occ(Nint*bit_kind_size,2)
|
|
integer :: other_spin
|
|
integer :: k,l,i,jj,mm,j,m
|
|
double precision :: direct_int, exchange_int
|
|
|
|
|
|
if (iorb < 1) then
|
|
print *, irp_here, ': iorb < 1'
|
|
print *, iorb, mo_num
|
|
stop -1
|
|
endif
|
|
if (iorb > mo_num) then
|
|
print *, irp_here, ': iorb > mo_num'
|
|
print *, iorb, mo_num
|
|
stop -1
|
|
endif
|
|
|
|
ASSERT (ispin > 0)
|
|
ASSERT (ispin < 3)
|
|
ASSERT (Nint > 0)
|
|
|
|
integer :: tmp(2)
|
|
!DIR$ FORCEINLINE
|
|
call bitstring_to_list_ab(key, occ, tmp, Nint)
|
|
ASSERT (tmp(1) == elec_alpha_num)
|
|
ASSERT (tmp(2) == elec_beta_num)
|
|
|
|
k = shiftr(iorb-1,bit_kind_shift)+1
|
|
ASSERT (k >0)
|
|
l = iorb - shiftl(k-1,bit_kind_shift)-1
|
|
ASSERT (l >= 0)
|
|
key(k,ispin) = ibset(key(k,ispin),l)
|
|
other_spin = iand(ispin,1)+1
|
|
|
|
hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb)
|
|
|
|
! Same spin
|
|
do i=1,na
|
|
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
|
|
enddo
|
|
|
|
! Opposite spin
|
|
do i=1,nb
|
|
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
|
|
enddo
|
|
|
|
na = na+1
|
|
end
|
|
|
|
subroutine a_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Routine that computes one- and two-body energy corresponding
|
|
!
|
|
! to the REMOVAL of an electron in an orbital 'iorb' of spin 'ispin'
|
|
!
|
|
! onto a determinant 'key'.
|
|
!
|
|
! in output, the determinant key is changed by the REMOVAL of that electron
|
|
!
|
|
! and the quantities hmono,htwoe are INCREMENTED
|
|
END_DOC
|
|
integer, intent(in) :: iorb, ispin, Nint
|
|
integer, intent(inout) :: na, nb
|
|
integer(bit_kind), intent(inout) :: key(Nint,2)
|
|
double precision, intent(inout) :: hmono,htwoe
|
|
|
|
double precision :: direct_int, exchange_int
|
|
integer :: occ(Nint*bit_kind_size,2)
|
|
integer :: other_spin
|
|
integer :: k,l,i,jj,mm,j,m
|
|
integer :: tmp(2)
|
|
|
|
ASSERT (iorb > 0)
|
|
ASSERT (ispin > 0)
|
|
ASSERT (ispin < 3)
|
|
ASSERT (Nint > 0)
|
|
|
|
k = shiftr(iorb-1,bit_kind_shift)+1
|
|
ASSERT (k>0)
|
|
l = iorb - shiftl(k-1,bit_kind_shift)-1
|
|
key(k,ispin) = ibclr(key(k,ispin),l)
|
|
other_spin = iand(ispin,1)+1
|
|
|
|
!DIR$ FORCEINLINE
|
|
call bitstring_to_list_ab(key, occ, tmp, Nint)
|
|
na = na-1
|
|
|
|
hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb)
|
|
|
|
! Same spin
|
|
do i = 1, na
|
|
htwoe = htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
|
|
enddo
|
|
|
|
! Opposite spin
|
|
do i = 1, nb
|
|
htwoe = htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
|
|
enddo
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
subroutine diag_htc_bi_orth_2e_brute(Nint, key_i, hmono, htwoe, htot)
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! diagonal element of htilde ONLY FOR ONE- AND TWO-BODY TERMS
|
|
!
|
|
END_DOC
|
|
|
|
use bitmasks
|
|
|
|
implicit none
|
|
integer, intent(in) :: Nint
|
|
integer(bit_kind), intent(in) :: key_i(Nint,2)
|
|
double precision, intent(out) :: hmono,htwoe,htot
|
|
integer :: occ(Nint*bit_kind_size,2)
|
|
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
|
|
double precision :: get_mo_two_e_integral_tc_int
|
|
integer(bit_kind) :: key_i_core(Nint,2)
|
|
|
|
PROVIDE mo_bi_ortho_tc_two_e
|
|
|
|
hmono = 0.d0
|
|
htwoe = 0.d0
|
|
htot = 0.d0
|
|
|
|
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
|
|
|
do ispin = 1, 2
|
|
do i = 1, Ne(ispin)
|
|
ii = occ(i,ispin)
|
|
hmono += mo_bi_ortho_tc_one_e(ii,ii)
|
|
enddo
|
|
enddo
|
|
|
|
! alpha/beta two-body
|
|
ispin = 1
|
|
jspin = 2
|
|
do i = 1, Ne(ispin) ! electron 1 (so it can be associated to mu(r1))
|
|
ii = occ(i,ispin)
|
|
do j = 1, Ne(jspin) ! electron 2
|
|
jj = occ(j,jspin)
|
|
htwoe += mo_bi_ortho_tc_two_e(jj,ii,jj,ii)
|
|
enddo
|
|
enddo
|
|
|
|
! alpha/alpha two-body
|
|
do i = 1, Ne(ispin)
|
|
ii = occ(i,ispin)
|
|
do j = i+1, Ne(ispin)
|
|
jj = occ(j,ispin)
|
|
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
|
|
enddo
|
|
enddo
|
|
|
|
! beta/beta two-body
|
|
do i = 1, Ne(jspin)
|
|
ii = occ(i,jspin)
|
|
do j = i+1, Ne(jspin)
|
|
jj = occ(j,jspin)
|
|
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
|
|
enddo
|
|
enddo
|
|
|
|
htot = hmono + htwoe
|
|
|
|
end
|
|
|
|
! ---
|
|
|
|
subroutine diag_htc_bi_orth_3e_brute(Nint, key_i, hthree)
|
|
|
|
BEGIN_DOC
|
|
! diagonal element of htilde ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
|
|
END_DOC
|
|
|
|
use bitmasks
|
|
|
|
implicit none
|
|
integer, intent(in) :: Nint
|
|
integer(bit_kind), intent(in) :: key_i(Nint,2)
|
|
double precision, intent(out) :: hthree
|
|
integer :: occ(Nint*bit_kind_size,2)
|
|
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
|
|
integer(bit_kind) :: key_i_core(Nint,2)
|
|
double precision :: direct_int, exchange_int, ref
|
|
double precision, external :: sym_3_e_int_from_6_idx_tensor
|
|
double precision, external :: three_e_diag_parrallel_spin
|
|
|
|
PROVIDE mo_l_coef mo_r_coef
|
|
|
|
if(core_tc_op) then
|
|
do i = 1, Nint
|
|
key_i_core(i,1) = xor(key_i(i,1), core_bitmask(i,1))
|
|
key_i_core(i,2) = xor(key_i(i,2), core_bitmask(i,2))
|
|
enddo
|
|
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
|
|
else
|
|
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
|
endif
|
|
|
|
hthree = 0.d0
|
|
|
|
if((Ne(1)+Ne(2)) .ge. 3) then
|
|
|
|
! alpha/alpha/beta three-body
|
|
do i = 1, Ne(1)
|
|
ii = occ(i,1)
|
|
do j = i+1, Ne(1)
|
|
jj = occ(j,1)
|
|
do m = 1, Ne(2)
|
|
mm = occ(m,2)
|
|
!direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
|
|
!exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
|
|
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) !uses 3-idx tensor
|
|
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) !uses 3-idx tensor
|
|
hthree += direct_int - exchange_int
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! beta/beta/alpha three-body
|
|
do i = 1, Ne(2)
|
|
ii = occ(i,2)
|
|
do j = i+1, Ne(2)
|
|
jj = occ(j,2)
|
|
do m = 1, Ne(1)
|
|
mm = occ(m,1)
|
|
!direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
|
|
!exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
|
|
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii)
|
|
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii)
|
|
hthree += direct_int - exchange_int
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! alpha/alpha/alpha three-body
|
|
do i = 1, Ne(1)
|
|
ii = occ(i,1) ! 1
|
|
do j = i+1, Ne(1)
|
|
jj = occ(j,1) ! 2
|
|
do m = j+1, Ne(1)
|
|
mm = occ(m,1) ! 3
|
|
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
|
|
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! beta/beta/beta three-body
|
|
do i = 1, Ne(2)
|
|
ii = occ(i,2) ! 1
|
|
do j = i+1, Ne(2)
|
|
jj = occ(j,2) ! 2
|
|
do m = j+1, Ne(2)
|
|
mm = occ(m,2) ! 3
|
|
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
|
|
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
endif
|
|
|
|
end
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, three_e_diag_parrallel_spin_prov, (mo_num, mo_num, mo_num)]
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS
|
|
!
|
|
! three_e_diag_parrallel_spin_prov(m,j,i) = All combinations of the form <mji|-L|mji> for same spin matrix elements
|
|
!
|
|
! notice the -1 sign: in this way three_e_diag_parrallel_spin_prov can be directly used to compute Slater rules with a + sign
|
|
!
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer :: i, j, m
|
|
double precision :: integral, wall1, wall0, three_e_diag_parrallel_spin
|
|
|
|
three_e_diag_parrallel_spin_prov = 0.d0
|
|
print *, ' Providing the three_e_diag_parrallel_spin_prov ...'
|
|
|
|
integral = three_e_diag_parrallel_spin(1,1,1) ! to provide all stuffs
|
|
call wall_time(wall0)
|
|
!$OMP PARALLEL &
|
|
!$OMP DEFAULT (NONE) &
|
|
!$OMP PRIVATE (i,j,m,integral) &
|
|
!$OMP SHARED (mo_num,three_e_diag_parrallel_spin_prov)
|
|
!$OMP DO SCHEDULE (dynamic)
|
|
do i = 1, mo_num
|
|
do j = 1, mo_num
|
|
do m = j, mo_num
|
|
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin(m,j,i)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
do i = 1, mo_num
|
|
do j = 1, mo_num
|
|
do m = 1, j
|
|
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin_prov(j,m,i)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
call wall_time(wall1)
|
|
print *, ' wall time for three_e_diag_parrallel_spin_prov', wall1 - wall0
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, three_e_single_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num)]
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
|
!
|
|
! three_e_single_parrallel_spin_prov(m,j,k,i) = All combination of <mjk|-L|mji> for same spin matrix elements
|
|
!
|
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
|
!
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer :: i, j, k, m
|
|
double precision :: integral, wall1, wall0, three_e_single_parrallel_spin
|
|
|
|
three_e_single_parrallel_spin_prov = 0.d0
|
|
print *, ' Providing the three_e_single_parrallel_spin_prov ...'
|
|
|
|
integral = three_e_single_parrallel_spin(1,1,1,1)
|
|
call wall_time(wall0)
|
|
!$OMP PARALLEL &
|
|
!$OMP DEFAULT (NONE) &
|
|
!$OMP PRIVATE (i,j,k,m,integral) &
|
|
!$OMP SHARED (mo_num,three_e_single_parrallel_spin_prov)
|
|
!$OMP DO SCHEDULE (dynamic)
|
|
do i = 1, mo_num
|
|
do k = 1, mo_num
|
|
do j = 1, mo_num
|
|
do m = 1, mo_num
|
|
three_e_single_parrallel_spin_prov(m,j,k,i) = three_e_single_parrallel_spin(m,j,k,i)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
call wall_time(wall1)
|
|
print *, ' wall time for three_e_single_parrallel_spin_prov', wall1 - wall0
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [ double precision, three_e_double_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
|
!
|
|
! three_e_double_parrallel_spin_prov(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
|
!
|
|
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer :: i, j, k, m, l
|
|
double precision :: integral, wall1, wall0, three_e_double_parrallel_spin
|
|
|
|
three_e_double_parrallel_spin_prov = 0.d0
|
|
print *, ' Providing the three_e_double_parrallel_spin_prov ...'
|
|
call wall_time(wall0)
|
|
|
|
integral = three_e_double_parrallel_spin(1,1,1,1,1)
|
|
!$OMP PARALLEL &
|
|
!$OMP DEFAULT (NONE) &
|
|
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
|
!$OMP SHARED (mo_num,three_e_double_parrallel_spin_prov)
|
|
!$OMP DO SCHEDULE (dynamic)
|
|
do i = 1, mo_num
|
|
do k = 1, mo_num
|
|
do j = 1, mo_num
|
|
do l = 1, mo_num
|
|
do m = 1, mo_num
|
|
three_e_double_parrallel_spin_prov(m,l,j,k,i) = three_e_double_parrallel_spin(m,l,j,k,i)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
call wall_time(wall1)
|
|
print *, ' wall time for three_e_double_parrallel_spin_prov', wall1 - wall0
|
|
|
|
END_PROVIDER
|
|
|