mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-10-10 01:43:06 +02:00
230 lines
6.9 KiB
Fortran
230 lines
6.9 KiB
Fortran
BEGIN_PROVIDER [ double precision, ao_overlap,(ao_num,ao_num) ]
|
|
&BEGIN_PROVIDER [ double precision, ao_overlap_x,(ao_num,ao_num) ]
|
|
&BEGIN_PROVIDER [ double precision, ao_overlap_y,(ao_num,ao_num) ]
|
|
&BEGIN_PROVIDER [ double precision, ao_overlap_z,(ao_num,ao_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Overlap between atomic basis functions:
|
|
!
|
|
! :math:`\int \chi_i(r) \chi_j(r) dr`
|
|
END_DOC
|
|
integer :: i,j,n,l
|
|
double precision :: f
|
|
integer :: dim1
|
|
double precision :: overlap, overlap_x, overlap_y, overlap_z
|
|
double precision :: alpha, beta, c
|
|
double precision :: A_center(3), B_center(3)
|
|
integer :: power_A(3), power_B(3)
|
|
ao_overlap = 0.d0
|
|
ao_overlap_x = 0.d0
|
|
ao_overlap_y = 0.d0
|
|
ao_overlap_z = 0.d0
|
|
if (read_ao_integrals_overlap) then
|
|
call ezfio_get_ao_one_e_ints_ao_integrals_overlap(ao_overlap(1:ao_num, 1:ao_num))
|
|
print *, 'AO overlap integrals read from disk'
|
|
else
|
|
|
|
dim1=100
|
|
!$OMP PARALLEL DO SCHEDULE(GUIDED) &
|
|
!$OMP DEFAULT(NONE) &
|
|
!$OMP PRIVATE(A_center,B_center,power_A,power_B,&
|
|
!$OMP overlap_x,overlap_y, overlap_z, overlap, &
|
|
!$OMP alpha, beta,i,j,c) &
|
|
!$OMP SHARED(nucl_coord,ao_power,ao_prim_num, &
|
|
!$OMP ao_overlap_x,ao_overlap_y,ao_overlap_z,ao_overlap,ao_num,ao_coef_normalized_ordered_transp,ao_nucl, &
|
|
!$OMP ao_expo_ordered_transp,dim1)
|
|
do j=1,ao_num
|
|
A_center(1) = nucl_coord( ao_nucl(j), 1 )
|
|
A_center(2) = nucl_coord( ao_nucl(j), 2 )
|
|
A_center(3) = nucl_coord( ao_nucl(j), 3 )
|
|
power_A(1) = ao_power( j, 1 )
|
|
power_A(2) = ao_power( j, 2 )
|
|
power_A(3) = ao_power( j, 3 )
|
|
do i= 1,ao_num
|
|
B_center(1) = nucl_coord( ao_nucl(i), 1 )
|
|
B_center(2) = nucl_coord( ao_nucl(i), 2 )
|
|
B_center(3) = nucl_coord( ao_nucl(i), 3 )
|
|
power_B(1) = ao_power( i, 1 )
|
|
power_B(2) = ao_power( i, 2 )
|
|
power_B(3) = ao_power( i, 3 )
|
|
do n = 1,ao_prim_num(j)
|
|
alpha = ao_expo_ordered_transp(n,j)
|
|
do l = 1, ao_prim_num(i)
|
|
beta = ao_expo_ordered_transp(l,i)
|
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
|
c = ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)
|
|
ao_overlap(i,j) += c * overlap
|
|
ao_overlap_x(i,j) += c * overlap_x
|
|
ao_overlap_y(i,j) += c * overlap_y
|
|
ao_overlap_z(i,j) += c * overlap_z
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
endif
|
|
if (write_ao_integrals_overlap) then
|
|
call ezfio_set_ao_one_e_ints_ao_integrals_overlap(ao_overlap(1:ao_num, 1:ao_num))
|
|
print *, 'AO overlap integrals written to disk'
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, ao_overlap_abs,(ao_num,ao_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Overlap between absolute values of atomic basis functions:
|
|
!
|
|
! :math:`\int |\chi_i(r)| |\chi_j(r)| dr`
|
|
END_DOC
|
|
integer :: i,j,n,l
|
|
double precision :: f
|
|
integer :: dim1
|
|
double precision :: overlap, overlap_x, overlap_y, overlap_z
|
|
double precision :: alpha, beta
|
|
double precision :: A_center(3), B_center(3)
|
|
integer :: power_A(3), power_B(3)
|
|
double precision :: lower_exp_val, dx
|
|
dim1=100
|
|
lower_exp_val = 40.d0
|
|
!$OMP PARALLEL DO SCHEDULE(GUIDED) &
|
|
!$OMP DEFAULT(NONE) &
|
|
!$OMP PRIVATE(A_center,B_center,power_A,power_B,&
|
|
!$OMP overlap_x,overlap_y, overlap_z, overlap, &
|
|
!$OMP alpha, beta,i,j,dx) &
|
|
!$OMP SHARED(nucl_coord,ao_power,ao_prim_num, &
|
|
!$OMP ao_overlap_abs,ao_num,ao_coef_normalized_ordered_transp,ao_nucl, &
|
|
!$OMP ao_expo_ordered_transp,dim1,lower_exp_val)
|
|
do j=1,ao_num
|
|
A_center(1) = nucl_coord( ao_nucl(j), 1 )
|
|
A_center(2) = nucl_coord( ao_nucl(j), 2 )
|
|
A_center(3) = nucl_coord( ao_nucl(j), 3 )
|
|
power_A(1) = ao_power( j, 1 )
|
|
power_A(2) = ao_power( j, 2 )
|
|
power_A(3) = ao_power( j, 3 )
|
|
do i= 1,ao_num
|
|
ao_overlap_abs(i,j)= 0.d0
|
|
B_center(1) = nucl_coord( ao_nucl(i), 1 )
|
|
B_center(2) = nucl_coord( ao_nucl(i), 2 )
|
|
B_center(3) = nucl_coord( ao_nucl(i), 3 )
|
|
power_B(1) = ao_power( i, 1 )
|
|
power_B(2) = ao_power( i, 2 )
|
|
power_B(3) = ao_power( i, 3 )
|
|
do n = 1,ao_prim_num(j)
|
|
alpha = ao_expo_ordered_transp(n,j)
|
|
do l = 1, ao_prim_num(i)
|
|
beta = ao_expo_ordered_transp(l,i)
|
|
call overlap_x_abs(A_center(1),B_center(1),alpha,beta,power_A(1),power_B(1),overlap_x,lower_exp_val,dx,dim1)
|
|
call overlap_x_abs(A_center(2),B_center(2),alpha,beta,power_A(2),power_B(2),overlap_y,lower_exp_val,dx,dim1)
|
|
call overlap_x_abs(A_center(3),B_center(3),alpha,beta,power_A(3),power_B(3),overlap_z,lower_exp_val,dx,dim1)
|
|
ao_overlap_abs(i,j) += abs(ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)) * overlap_x * overlap_y * overlap_z
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, S_inv,(ao_num,ao_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Inverse of the overlap matrix
|
|
END_DOC
|
|
call get_pseudo_inverse(ao_overlap,size(ao_overlap,1),ao_num,ao_num,S_inv,size(S_inv,1))
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, S_half_inv, (AO_num,AO_num) ]
|
|
|
|
BEGIN_DOC
|
|
! :math:`X = S^{-1/2}` obtained by SVD
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
integer :: num_linear_dependencies
|
|
integer :: LDA, LDC
|
|
double precision, allocatable :: U(:,:),Vt(:,:), D(:)
|
|
integer :: info, i, j, k
|
|
double precision, parameter :: threshold_overlap_AO_eigenvalues = 1.d-6
|
|
|
|
LDA = size(AO_overlap,1)
|
|
LDC = size(S_half_inv,1)
|
|
|
|
allocate( &
|
|
U(LDC,AO_num), &
|
|
Vt(LDA,AO_num), &
|
|
D(AO_num))
|
|
|
|
call svd( &
|
|
AO_overlap,LDA, &
|
|
U,LDC, &
|
|
D, &
|
|
Vt,LDA, &
|
|
AO_num,AO_num)
|
|
|
|
num_linear_dependencies = 0
|
|
do i=1,AO_num
|
|
print*,D(i)
|
|
if(abs(D(i)) <= threshold_overlap_AO_eigenvalues) then
|
|
D(i) = 0.d0
|
|
num_linear_dependencies += 1
|
|
else
|
|
ASSERT (D(i) > 0.d0)
|
|
D(i) = 1.d0/sqrt(D(i))
|
|
endif
|
|
do j=1,AO_num
|
|
S_half_inv(j,i) = 0.d0
|
|
enddo
|
|
enddo
|
|
write(*,*) 'linear dependencies',num_linear_dependencies
|
|
|
|
do k=1,AO_num
|
|
if(D(k) /= 0.d0) then
|
|
do j=1,AO_num
|
|
do i=1,AO_num
|
|
S_half_inv(i,j) = S_half_inv(i,j) + U(i,k)*D(k)*Vt(k,j)
|
|
enddo
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, S_half, (ao_num,ao_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! :math:`S^{1/2}`
|
|
END_DOC
|
|
|
|
integer :: i,j,k
|
|
double precision, allocatable :: U(:,:)
|
|
double precision, allocatable :: Vt(:,:)
|
|
double precision, allocatable :: D(:)
|
|
|
|
allocate(U(ao_num,ao_num),Vt(ao_num,ao_num),D(ao_num))
|
|
|
|
call svd(ao_overlap,size(ao_overlap,1),U,size(U,1),D,Vt,size(Vt,1),ao_num,ao_num)
|
|
|
|
do i=1,ao_num
|
|
D(i) = dsqrt(D(i))
|
|
do j=1,ao_num
|
|
S_half(j,i) = 0.d0
|
|
enddo
|
|
enddo
|
|
|
|
do k=1,ao_num
|
|
do j=1,ao_num
|
|
do i=1,ao_num
|
|
S_half(i,j) = S_half(i,j) + U(i,k)*D(k)*Vt(k,j)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
deallocate(U,Vt,D)
|
|
|
|
END_PROVIDER
|
|
|