9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-21 17:12:01 +01:00
qp2/plugins/local/bi_ort_ints/three_body_ijm.irp.f

391 lines
10 KiB
Fortran

! ---
BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the direct terms
!
! three_e_3_idx_direct_bi_ort(m,j,i) = <mji|-L|mji>
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
three_e_3_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_direct_bi_ort ...'
call wall_time(wall0)
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_3_idx_direct_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
call give_integrals_3_body_bi_ort(m, j, i, m, j, i, integral)
three_e_3_idx_direct_bi_ort(m,j,i) = -1.d0 * integral
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_3_idx_direct_bi_ort(m,j,i) = three_e_3_idx_direct_bi_ort(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_direct_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the first cyclic permutation
!
! three_e_3_idx_cycle_1_bi_ort(m,j,i) = <mji|-L|jim>
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0
three_e_3_idx_cycle_1_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_cycle_1_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_3_idx_cycle_1_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
call give_integrals_3_body_bi_ort(m, j, i, j, i, m, integral)
three_e_3_idx_cycle_1_bi_ort(m,j,i) = -1.d0 * integral
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_3_idx_cycle_1_bi_ort(m,j,i) = three_e_3_idx_cycle_1_bi_ort(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_cycle_1_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the second cyclic permutation
!
! three_e_3_idx_direct_bi_ort(m,j,i) = <mji|-L|imj>
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_cycle_2_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_3_idx_cycle_2_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
call give_integrals_3_body_bi_ort(m, j, i, i, m, j, integral)
three_e_3_idx_cycle_2_bi_ort(m,j,i) = -1.d0 * integral
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_3_idx_cycle_2_bi_ort(m,j,i) = three_e_3_idx_cycle_2_bi_ort(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_cycle_2_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch23_bi_ort, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 2 and 3
!
! three_e_3_idx_exch23_bi_ort(m,j,i) = <mji|-L|jmi>
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch23_bi_ort = 0.d0
print*,'Providing the three_e_3_idx_exch23_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_3_idx_exch23_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
call give_integrals_3_body_bi_ort(m, j, i, j, m, i, integral)
three_e_3_idx_exch23_bi_ort(m,j,i) = -1.d0 * integral
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_3_idx_exch23_bi_ort(m,j,i) = three_e_3_idx_exch23_bi_ort(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch23_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch13_bi_ort, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 1 and 3
!
! three_e_3_idx_exch13_bi_ort(m,j,i) = <mji|-L|ijm>
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i,j,m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_exch13_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_3_idx_exch13_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
call give_integrals_3_body_bi_ort(m, j, i, i, j, m,integral)
three_e_3_idx_exch13_bi_ort(m,j,i) = -1.d0 * integral
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_3_idx_exch13_bi_ort(m,j,i) = three_e_3_idx_exch13_bi_ort(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch13_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 1 and 2
!
! three_e_3_idx_exch12_bi_ort(m,j,i) = <mji|-L|mij>
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch12_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_exch12_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_3_idx_exch12_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, i, m, i, j, integral)
three_e_3_idx_exch12_bi_ort(m,j,i) = -1.d0 * integral
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch12_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort_new, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS for the permutations of particle 1 and 2
!
! three_e_3_idx_exch12_bi_ort_new(m,j,i) = <mji|-L|mij>
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0
three_e_3_idx_exch12_bi_ort_new = 0.d0
print *, ' Providing the three_e_3_idx_exch12_bi_ort_new ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_3_idx_exch12_bi_ort_new)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
call give_integrals_3_body_bi_ort(m, j, i, m, i, j, integral)
three_e_3_idx_exch12_bi_ort_new(m,j,i) = -1.d0 * integral
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_3_idx_exch12_bi_ort_new(m,j,i) = three_e_3_idx_exch12_bi_ort_new(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch12_bi_ort_new', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---