9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-28 09:18:06 +01:00
qp2/src/ao_one_e_ints/aos_cgtos.irp.f
2024-10-14 19:11:43 +02:00

268 lines
8.7 KiB
Fortran

! ---
BEGIN_PROVIDER [double precision, ao_coef_cgtos_norm_ord_transp, (ao_prim_num_max, ao_num)]
implicit none
integer :: i, j
do j = 1, ao_num
do i = 1, ao_prim_num_max
ao_coef_cgtos_norm_ord_transp(i,j) = ao_coef_norm_cgtos_ord(j,i)
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [complex*16, ao_expo_cgtos_ord_transp, (ao_prim_num_max, ao_num)]
&BEGIN_PROVIDER [complex*16, ao_expo_pw_ord_transp, (4, ao_prim_num_max, ao_num)]
&BEGIN_PROVIDER [complex*16, ao_expo_phase_ord_transp, (4, ao_prim_num_max, ao_num)]
implicit none
integer :: i, j, m
do j = 1, ao_num
do i = 1, ao_prim_num_max
ao_expo_cgtos_ord_transp(i,j) = ao_expo_cgtos_ord(j,i)
do m = 1, 3
ao_expo_pw_ord_transp(m,i,j) = ao_expo_pw_ord(m,j,i)
ao_expo_phase_ord_transp(m,i,j) = ao_expo_phase_ord(m,j,i)
enddo
ao_expo_pw_ord_transp(4,i,j) = ao_expo_pw_ord_transp(1,i,j) &
+ ao_expo_pw_ord_transp(2,i,j) &
+ ao_expo_pw_ord_transp(3,i,j)
ao_expo_phase_ord_transp(4,i,j) = ao_expo_phase_ord_transp(1,j,i) &
+ ao_expo_phase_ord_transp(2,j,i) &
+ ao_expo_phase_ord_transp(3,j,i)
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos, (ao_num, ao_prim_num_max)]
implicit none
integer :: i, j, powA(3), nz
double precision :: norm
complex*16 :: overlap_x, overlap_y, overlap_z, C_A(3)
complex*16 :: integ1, integ2, expo
nz = 100
C_A(1) = (0.d0, 0.d0)
C_A(2) = (0.d0, 0.d0)
C_A(3) = (0.d0, 0.d0)
ao_coef_norm_cgtos = 0.d0
do i = 1, ao_num
powA(1) = ao_power(i,1)
powA(2) = ao_power(i,2)
powA(3) = ao_power(i,3)
! TODO
! Normalization of the primitives
if(primitives_normalized) then
do j = 1, ao_prim_num(i)
expo = ao_expo(i,j) + (0.d0, 1.d0) * ao_expo_im_cgtos(i,j)
call overlap_cgaussian_xyz(C_A, C_A, expo, expo, powA, powA, overlap_x, overlap_y, overlap_z, integ1, nz)
call overlap_cgaussian_xyz(C_A, C_A, conjg(expo), expo, powA, powA, overlap_x, overlap_y, overlap_z, integ2, nz)
norm = 2.d0 * real(integ1 + integ2)
ao_coef_norm_cgtos(i,j) = ao_coef(i,j) / dsqrt(norm)
enddo
else
do j = 1, ao_prim_num(i)
ao_coef_norm_cgtos(i,j) = ao_coef(i,j)
enddo
endif
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos_ord, (ao_num, ao_prim_num_max)]
&BEGIN_PROVIDER [complex*16 , ao_expo_cgtos_ord, (ao_num, ao_prim_num_max)]
&BEGIN_PROVIDER [double precision, ao_expo_pw_ord, (3, ao_num, ao_prim_num_max)]
&BEGIN_PROVIDER [double precision, ao_expo_phase_ord, (3, ao_num, ao_prim_num_max)]
implicit none
integer :: i, j
integer :: iorder(ao_prim_num_max)
double precision :: d(ao_prim_num_max,9)
d = 0.d0
do i = 1, ao_num
do j = 1, ao_prim_num(i)
iorder(j) = j
d(j,1) = ao_expo(i,j)
d(j,2) = ao_coef_norm_cgtos(i,j)
d(j,3) = ao_expo_im_cgtos(i,j)
d(j,4) = ao_expo_pw(1,i,j)
d(j,5) = ao_expo_pw(2,i,j)
d(j,6) = ao_expo_pw(3,i,j)
d(j,7) = ao_expo_phase(1,i,j)
d(j,8) = ao_expo_phase(2,i,j)
d(j,9) = ao_expo_phase(3,i,j)
enddo
call dsort(d(1,1), iorder, ao_prim_num(i))
do j = 2, 9
call dset_order(d(1,j), iorder, ao_prim_num(i))
enddo
do j = 1, ao_prim_num(i)
ao_expo_cgtos_ord (i,j) = d(j,1) + (0.d0, 1.d0) * d(j,3)
ao_coef_norm_cgtos_ord(i,j) = d(j,2)
ao_expo_pw_ord(i,j,1) = d(j,4)
ao_expo_pw_ord(i,j,2) = d(j,5)
ao_expo_pw_ord(i,j,3) = d(j,6)
ao_expo_phase_ord(i,j,1) = d(j,7)
ao_expo_phase_ord(i,j,2) = d(j,8)
ao_expo_phase_ord(i,j,3) = d(j,9)
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, ao_overlap_cgtos, (ao_num, ao_num)]
&BEGIN_PROVIDER [double precision, ao_overlap_cgtos_x, (ao_num, ao_num)]
&BEGIN_PROVIDER [double precision, ao_overlap_cgtos_y, (ao_num, ao_num)]
&BEGIN_PROVIDER [double precision, ao_overlap_cgtos_z, (ao_num, ao_num)]
implicit none
integer :: i, j, m, n, l, ii, jj, dim1, power_A(3), power_B(3)
double precision :: c, overlap, overlap_x, overlap_y, overlap_z
complex*16 :: alpha, alpha_inv, A_center(3), KA2(3), phiA(3)
complex*16 :: beta, beta_inv, B_center(3), KB2(3), phiB(3)
complex*16 :: C1(1:4), C2(1:4)
complex*16 :: overlap1, overlap_x1, overlap_y1, overlap_z1
complex*16 :: overlap2, overlap_x2, overlap_y2, overlap_z2
ao_overlap_cgtos = 0.d0
ao_overlap_cgtos_x = 0.d0
ao_overlap_cgtos_y = 0.d0
ao_overlap_cgtos_z = 0.d0
dim1 = 100
!$OMP PARALLEL DO SCHEDULE(GUIDED) &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(i, j, m, n, l, ii, jj, c, C1, C2, &
!$OMP alpha, alpha_inv, A_center, power_A, KA2, phiA, &
!$OMP beta, beta_inv, B_center, power_B, KB2, phiB, &
!$OMP overlap_x , overlap_y , overlap_z , overlap, &
!$OMP overlap_x1, overlap_y1, overlap_z1, overlap1, &
!$OMP overlap_x2, overlap_y2, overlap_z2, overlap2) &
!$OMP SHARED(nucl_coord, ao_power, ao_prim_num, ao_num, ao_nucl, dim1, &
!$OMP ao_coef_cgtos_norm_ord_transp, ao_expo_cgtos_ord_transp, &
!$OMP ao_expo_pw_ord_transp, ao_expo_phase_ord_transp, &
!$OMP ao_overlap_cgtos_x, ao_overlap_cgtos_y, ao_overlap_cgtos_z, &
!$OMP ao_overlap_cgtos)
do j = 1, ao_num
jj = ao_nucl(j)
power_A(1) = ao_power(j,1)
power_A(2) = ao_power(j,2)
power_A(3) = ao_power(j,3)
do i = 1, ao_num
ii = ao_nucl(i)
power_B(1) = ao_power(i,1)
power_B(2) = ao_power(i,2)
power_B(3) = ao_power(i,3)
do n = 1, ao_prim_num(j)
alpha = ao_expo_cgtos_ord_transp(n,j)
alpha_inv = (1.d0, 0.d0) / alpha
do m = 1, 3
phiA(m) = ao_expo_phase_ord_transp(m,n,j)
A_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * alpha_inv * ao_expo_pw_ord_transp(m,n,j)
KA2(m) = ao_expo_pw_ord_transp(m,n,j) * ao_expo_pw_ord_transp(m,n,j)
enddo
do l = 1, ao_prim_num(i)
beta = ao_expo_cgtos_ord_transp(l,i)
beta_inv = (1.d0, 0.d0) / beta
do m = 1, 3
phiB(m) = ao_expo_phase_ord_transp(m,l,i)
B_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * beta_inv * ao_expo_pw_ord_transp(m,l,i)
KB2(m) = ao_expo_pw_ord_transp(m,l,i) * ao_expo_pw_ord_transp(m,l,i)
enddo
c = ao_coef_cgtos_norm_ord_transp(n,j) * ao_coef_cgtos_norm_ord_transp(l,i)
C1(1) = zexp((0.d0, 1.d0) * (-phiA(1) + phiB(1)) - 0.25d0 * (alpha_inv * KA2(1) + beta_inv * KB2(1)))
C1(2) = zexp((0.d0, 1.d0) * (-phiA(2) + phiB(2)) - 0.25d0 * (alpha_inv * KA2(2) + beta_inv * KB2(2)))
C1(3) = zexp((0.d0, 1.d0) * (-phiA(3) + phiB(3)) - 0.25d0 * (alpha_inv * KA2(3) + beta_inv * KB2(3)))
C1(4) = C1(1) * C1(2) * C1(3)
C2(1) = zexp((0.d0, 1.d0) * (phiA(1) + phiB(1)) - 0.25d0 * (conjg(alpha_inv) * KA2(1) + beta_inv * KB2(1)))
C2(2) = zexp((0.d0, 1.d0) * (phiA(2) + phiB(2)) - 0.25d0 * (conjg(alpha_inv) * KA2(2) + beta_inv * KB2(2)))
C2(3) = zexp((0.d0, 1.d0) * (phiA(3) + phiB(3)) - 0.25d0 * (conjg(alpha_inv) * KA2(3) + beta_inv * KB2(3)))
C2(4) = C2(1) * C2(2) * C2(3)
call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, &
overlap_x1, overlap_y1, overlap_z1, overlap1, dim1)
call overlap_cgaussian_xyz(A_center, B_center, conjg(alpha), beta, power_A, power_B, &
overlap_x2, overlap_y2, overlap_z2, overlap2, dim1)
overlap_x = 2.d0 * real(C1(1) * overlap_x1 + C2(1) * overlap_x2)
overlap_y = 2.d0 * real(C1(2) * overlap_y1 + C2(2) * overlap_y2)
overlap_z = 2.d0 * real(C1(3) * overlap_z1 + C2(3) * overlap_z2)
overlap = 2.d0 * real(C1(4) * overlap1 + C2(4) * overlap2 )
ao_overlap_cgtos(i,j) = ao_overlap_cgtos(i,j) + c * overlap
if(isnan(ao_overlap_cgtos(i,j))) then
print*,'i, j', i, j
print*,'l, n', l, n
print*,'c, overlap', c, overlap
print*, overlap_x, overlap_y, overlap_z
stop
endif
ao_overlap_cgtos_x(i,j) = ao_overlap_cgtos_x(i,j) + c * overlap_x
ao_overlap_cgtos_y(i,j) = ao_overlap_cgtos_y(i,j) + c * overlap_y
ao_overlap_cgtos_z(i,j) = ao_overlap_cgtos_z(i,j) + c * overlap_z
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
! ---