9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-09 17:33:05 +02:00
qp2/plugins/local/bi_ort_ints/three_body_ints_bi_ort.irp.f

251 lines
9.5 KiB
Fortran

! ---
BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
! matrix element of the -L three-body operator
!
! notice the -1 sign: in this way three_body_ints_bi_ort can be directly used to compute Slater rules :)
END_DOC
implicit none
integer :: i, j, k, l, m, n
double precision :: integral, wall1, wall0
character*(128) :: name_file
three_body_ints_bi_ort = 0.d0
print *, ' Providing the three_body_ints_bi_ort ...'
call wall_time(wall0)
name_file = 'six_index_tensor'
! if(read_three_body_ints_bi_ort)then
! call read_fcidump_3_tc(three_body_ints_bi_ort)
! else
! if(read_three_body_ints_bi_ort)then
! print*,'Reading three_body_ints_bi_ort from disk ...'
! call read_array_6_index_tensor(mo_num,three_body_ints_bi_ort,name_file)
! else
!provide x_W_ki_bi_ortho_erf_rk
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
provide int2_grad1_u12_ao_transp final_grid_points int2_grad1_u12_bimo_t
provide mo_l_coef mo_r_coef mos_l_in_r_array_transp mos_r_in_r_array_transp n_points_final_grid
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,l,m,n,integral) &
!$OMP SHARED (mo_num,three_body_ints_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
do n = 1, mo_num
call give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral)
three_body_ints_bi_ort(n,l,k,m,j,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! endif
! endif
call wall_time(wall1)
print *, ' wall time for three_body_ints_bi_ort', wall1 - wall0
call print_memory_usage()
! if(write_three_body_ints_bi_ort)then
! print*,'Writing three_body_ints_bi_ort on disk ...'
! call write_array_6_index_tensor(mo_num,three_body_ints_bi_ort,name_file)
! call ezfio_set_three_body_ints_bi_ort_io_three_body_ints_bi_ort("Read")
! endif
END_PROVIDER
! ---
subroutine give_integrals_3_body_bi_ort_spin( n, sigma_n, l, sigma_l, k, sigma_k &
, m, sigma_m, j, sigma_j, i, sigma_i &
, integral)
BEGIN_DOC
!
! < n l k | L | m j i > with a BI-ORTHONORMAL SPIN-ORBITALS
!
! /!\ L is defined without the 1/6 factor
!
END_DOC
implicit none
integer, intent(in) :: n, l, k, m, j, i
double precision, intent(in) :: sigma_n, sigma_l, sigma_k, sigma_m, sigma_j, sigma_i
double precision, intent(out) :: integral
integer :: ipoint
double precision :: weight, tmp
logical, external :: is_same_spin
integral = 0.d0
if( is_same_spin(sigma_n, sigma_m) .and. &
is_same_spin(sigma_l, sigma_j) .and. &
is_same_spin(sigma_k, sigma_i) ) then
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_bimo_t
do ipoint = 1, n_points_final_grid
tmp = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
* ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,l,j) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,l,j) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,l,j) )
tmp = tmp + mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,k,i) )
tmp = tmp + mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) &
* ( int2_grad1_u12_bimo_t(ipoint,1,l,j) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,l,j) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,l,j) * int2_grad1_u12_bimo_t(ipoint,3,k,i) )
integral = integral + tmp * final_weight_at_r_vector(ipoint)
enddo
endif
return
end subroutine give_integrals_3_body_bi_ort_spin
! ---
subroutine give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral)
BEGIN_DOC
!
! < n l k | L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS
!
! /!\ L is defined without the 1/6 factor
!
END_DOC
implicit none
integer, intent(in) :: n, l, k, m, j, i
double precision, intent(out) :: integral
integer :: ipoint
double precision :: weight, tmp
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_bimo_t
integral = 0.d0
! (n, l, k, m, j, i)
do ipoint = 1, n_points_final_grid
tmp = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
* ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,l,j) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,l,j) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,l,j) )
tmp = tmp + mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,k,i) )
tmp = tmp + mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) &
* ( int2_grad1_u12_bimo_t(ipoint,1,l,j) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,l,j) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,l,j) * int2_grad1_u12_bimo_t(ipoint,3,k,i) )
integral = integral + tmp * final_weight_at_r_vector(ipoint)
enddo
end subroutine give_integrals_3_body_bi_ort
! ---
subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral)
BEGIN_DOC
!
! < n l k | L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS
!
! /!\ L is defined without the 1/6 factor
!
END_DOC
implicit none
integer, intent(in) :: n, l, k, m, j, i
double precision, intent(out) :: integral
integer :: ipoint
double precision :: weight
integral = 0.d0
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
* ( int2_grad1_u12_bimo_transp(n,m,1,ipoint) * int2_grad1_u12_bimo_transp(l,j,1,ipoint) &
+ int2_grad1_u12_bimo_transp(n,m,2,ipoint) * int2_grad1_u12_bimo_transp(l,j,2,ipoint) &
+ int2_grad1_u12_bimo_transp(n,m,3,ipoint) * int2_grad1_u12_bimo_transp(l,j,3,ipoint) )
integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_bimo_transp(n,m,1,ipoint) * int2_grad1_u12_bimo_transp(k,i,1,ipoint) &
+ int2_grad1_u12_bimo_transp(n,m,2,ipoint) * int2_grad1_u12_bimo_transp(k,i,2,ipoint) &
+ int2_grad1_u12_bimo_transp(n,m,3,ipoint) * int2_grad1_u12_bimo_transp(k,i,3,ipoint) )
integral += weight * mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) &
* ( int2_grad1_u12_bimo_transp(l,j,1,ipoint) * int2_grad1_u12_bimo_transp(k,i,1,ipoint) &
+ int2_grad1_u12_bimo_transp(l,j,2,ipoint) * int2_grad1_u12_bimo_transp(k,i,2,ipoint) &
+ int2_grad1_u12_bimo_transp(l,j,3,ipoint) * int2_grad1_u12_bimo_transp(k,i,3,ipoint) )
enddo
end subroutine give_integrals_3_body_bi_ort_old
! ---
subroutine give_integrals_3_body_bi_ort_ao(n, l, k, m, j, i, integral)
BEGIN_DOC
!
! < n l k | L | m j i > with a BI-ORTHONORMAL ATOMIC ORBITALS
!
! /!\ L is defined without the 1/6 factor
!
END_DOC
implicit none
integer, intent(in) :: n, l, k, m, j, i
double precision, intent(out) :: integral
integer :: ipoint
double precision :: weight
integral = 0.d0
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
integral += weight * aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,i) &
* ( int2_grad1_u12_ao_t(ipoint,1,n,m) * int2_grad1_u12_ao_t(ipoint,1,l,j) &
+ int2_grad1_u12_ao_t(ipoint,2,n,m) * int2_grad1_u12_ao_t(ipoint,2,l,j) &
+ int2_grad1_u12_ao_t(ipoint,3,n,m) * int2_grad1_u12_ao_t(ipoint,3,l,j) )
integral += weight * aos_in_r_array_transp(ipoint,l) * aos_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_ao_t(ipoint,1,n,m) * int2_grad1_u12_ao_t(ipoint,1,k,i) &
+ int2_grad1_u12_ao_t(ipoint,2,n,m) * int2_grad1_u12_ao_t(ipoint,2,k,i) &
+ int2_grad1_u12_ao_t(ipoint,3,n,m) * int2_grad1_u12_ao_t(ipoint,3,k,i) )
integral += weight * aos_in_r_array_transp(ipoint,n) * aos_in_r_array_transp(ipoint,m) &
* ( int2_grad1_u12_ao_t(ipoint,1,l,j) * int2_grad1_u12_ao_t(ipoint,1,k,i) &
+ int2_grad1_u12_ao_t(ipoint,2,l,j) * int2_grad1_u12_ao_t(ipoint,2,k,i) &
+ int2_grad1_u12_ao_t(ipoint,3,l,j) * int2_grad1_u12_ao_t(ipoint,3,k,i) )
enddo
end subroutine give_integrals_3_body_bi_ort_ao
! ---